1
|
Liu P, Shi J, Sheng D, Lu W, Guo J, Gao L, Wang X, Wu S, Feng Y, Dong D, Huang X, Tang H. Mitopherogenesis, a form of mitochondria-specific ectocytosis, regulates sperm mitochondrial quantity and fertility. Nat Cell Biol 2023; 25:1625-1636. [PMID: 37945830 DOI: 10.1038/s41556-023-01264-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/15/2023] [Indexed: 11/12/2023]
Abstract
Mitochondrial export into the extracellular space is emerging as a fundamental cellular process implicated in diverse physiological activities. Although a few studies have shed light on the process of discarding damaged mitochondria, how mitochondria are exported and the functions of mitochondrial release remain largely unclear. Here we describe mitopherogenesis, a formerly unknown process that specifically secretes mitochondria through a unique extracellular vesicle termed a 'mitopher'. We observed that during sperm development in male Caenorhabditis elegans, healthy mitochondria are exported out of the spermatids through mitopherogenesis and each of the generated mitophers harbours only one mitochondrion. In mitopherogenesis, the plasma membrane first forms mitochondrion-embedding outward buds, which then promptly bud off and thereby result in the generation of mitophers. Mechanistically, extracellular protease signalling in the testis triggers mitopher formation from spermatids, which is partially mediated by the tyrosine kinase SPE-8. Moreover, mitopherogenesis requires normal microfilament dynamics, whereas myosin VI antagonizes mitopher generation. Strikingly, our three-dimensional electron microscopy analyses indicate that mitochondrial quantity requires precise modulation during sperm development, which is critically mediated by mitopherogenesis. Inhibition of mitopherogenesis causes accumulation of mitochondria in sperm, which may lead to sperm motility and fertility defects. Our findings identify mitopherogenesis as a previously undescribed process for mitochondria-specific ectocytosis, which may represent a fundamental branch of mechanisms underlying mitochondrial quantity control to regulate cell functions during development.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Danli Sheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wenqing Lu
- Biomedical Engineering Department, Peking University, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| | - Jie Guo
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Lei Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaoqing Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Shaofeng Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yanwen Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dashan Dong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Xiaoshuai Huang
- Biomedical Engineering Department, Peking University, Beijing, China.
- International Cancer Institute, Peking University, Beijing, China.
| | - Hongyun Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
2
|
In Silico Identification of lncRNAs Regulating Sperm Motility in the Turkey (Meleagris gallopavo L.). Int J Mol Sci 2022; 23:ijms23147642. [PMID: 35887003 PMCID: PMC9324027 DOI: 10.3390/ijms23147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts not translated into proteins with a length of more than 200 bp. LncRNAs are considered an important factor in the regulation of countless biological processes, mainly through the regulation of gene expression and interactions with proteins. However, the detailed mechanism of interaction as well as functions of lncRNAs are still unclear and therefore constitute a serious research challenge. In this study, for the first time, potential mechanisms of lncRNA regulation of processes related to sperm motility in turkey were investigated and described. Customized bioinformatics analysis was used to detect and identify lncRNAs, and their correlations with differentially expressed genes and proteins were also investigated. Results revealed the expression of 863 new/unknown lncRNAs in ductus deferens, testes and epididymis of turkeys. Moreover, potential relationships of the lncRNAs with the coding mRNAs and their products were identified in turkey reproductive tissues. The results obtained from the OMICS study may be useful in describing and characterizing the way that lncRNAs regulate genes and proteins as well as signaling pathways related to sperm motility.
Collapse
|
3
|
Rahman MS, Pang WK, Ryu DY, Park YJ, Ryu BY, Pang MG. Multigenerational impacts of gestational bisphenol A exposure on the sperm function and fertility of male mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125791. [PMID: 33839502 DOI: 10.1016/j.jhazmat.2021.125791] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Growing evidence suggests that developmental exposure to bisphenol A (BPA)-a synthetic endocrine disruptor-causes atypical reproductive phenotypes that may persist for generations. However, the precise mechanism(s) by which BPA causes these adverse consequences is unclear. Here, pregnant female mice were orally exposed to 50 μg, 5 mg, and 50 mg BPA/kg body weight (bw)/day from 7 to 14 days of gestation. Corn oil treatments were used as control. The first filial generation (F1) and F2 males were used to generate F3 by mating them with unexposed females. High BPA doses impaired F1 and/or F1-F2 (multigenerational effect) male reproduction (i.e., disrupted testicular germ cell organization and spermatogenesis, altered sperm biochemical properties, and decreased sperm count, motility, and fertility) but not that of F3 males (transgenerational effect). Moreover, the observed multigenerational transmission of the abnormal reproductive traits was associated with alterations in the sperm DNA methylation patterns of specific male generations, with substantial proteomic changes in F1-F3 at the highest BPA dose. Given that the proteins related to male fertility and epigenetic modification are highly conserved among vertebrates, our findings may shed light on how exposure to environmental factors during pregnancy affects fertility in future generations in both humans and the other animals.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
4
|
de Almeida Monteiro Melo Ferraz M, Nagashima JB, Noonan MJ, Crosier AE, Songsasen N. Oviductal Extracellular Vesicles Improve Post-Thaw Sperm Function in Red Wolves and Cheetahs. Int J Mol Sci 2020; 21:E3733. [PMID: 32466321 PMCID: PMC7279450 DOI: 10.3390/ijms21103733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial insemination (AI) is a valuable tool for ex situ wildlife conservation, allowing the re-infusion and dissemination of genetic material, even after death of the donor. However, the application of AI to species conservation is still limited, due mainly to the poor survival of cryopreserved sperm. Recent work demonstrated that oviductal extracellular vesicles (oEVs) improved cat sperm motility and reduced premature acrosomal exocytosis. Here, we build on these findings by describing the protein content of dog and cat oEVs and investigating whether the incubation of cryopreserved red wolf and cheetah sperm with oEVs during thawing improves sperm function. Both red wolf and cheetah sperm thawed with dog and cat oEVs, respectively, had more intact acrosomes than the non-EV controls. Moreover, red wolf sperm thawed in the presence of dog oEVs better maintained sperm motility over time (>15%) though such an improvement was not observed in cheetah sperm. Our work demonstrates that dog and cat oEVs carry proteins important for sperm function and improve post-thaw motility and/or acrosome integrity of red wolf and cheetah sperm in vitro. The findings show how oEVs can be a valuable tool for improving the success of AI with cryopreserved sperm in threatened species.
Collapse
Affiliation(s)
| | - Jennifer Beth Nagashima
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA; (J.B.N.); (M.J.N.); (A.E.C.); (N.S.)
| | - Michael James Noonan
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA; (J.B.N.); (M.J.N.); (A.E.C.); (N.S.)
- The Irving K. Barber School of Arts and Sciences, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC V1V 1V7, Canada
| | - Adrienne E. Crosier
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA; (J.B.N.); (M.J.N.); (A.E.C.); (N.S.)
| | - Nucharin Songsasen
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA; (J.B.N.); (M.J.N.); (A.E.C.); (N.S.)
| |
Collapse
|
5
|
Pandey A, Yadav SK, Vishvkarma R, Singh B, Maikhuri JP, Rajender S, Gupta G. The dynamics of gene expression during and post meiosis sets the sperm agenda. Mol Reprod Dev 2019; 86:1921-1939. [DOI: 10.1002/mrd.23278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Aastha Pandey
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | | | - Rahul Vishvkarma
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | - Bineta Singh
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | | | - Singh Rajender
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | - Gopal Gupta
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
6
|
Abstract
Sperm cryopreservation is an important tool for storing genetic traits and assisted reproduction techniques. Several studies have developed semen cryopreservation protocols. However, the sperm proteome is different between ejaculated and epididymal spermatozoa and little is known about cryopreservation effects on epididymal spermatozoa. Therefore, our study aimed to (i) investigate the differences of sperm parameters based on the freezing tolerance of spermatozoa and (ii) identify potential markers to predict the freezability of bull epididymal spermatozoa. Our preliminary study demonstrated that spermatozoa from individual bulls differ in cryopreservation freezability. We categorized spermatozoa into high freezing-tolerant spermatozoa and low freezing-tolerant spermatozoa group based on sperm motility after freezing/thawing. We evaluated several sperm functional parameters, including sperm motility/motion kinematics, sperm speed parameters, viability, mitochondrial activity, and capacitation status. Our results demonstrated that motility, sperm speed parameters, viability, and mitochondrial membrane potential had significant differences between the two groups but motion kinematics and capacitation status did not. In addition, the concentration of three proteins - glutathione s-transferase mu 5, voltage-dependent anion-selective channel protein 2, and ATP synthase subunit beta, differed between both groups. Thus, our research highlighted differences in bull epididymal spermatozoa freezability upon cryopreservation and these proteins might be useful markers to select high freezing-tolerant epididymal spermatozoa.
Collapse
|
7
|
Research update and opportunity of non-hormonal male contraception: Histone demethylase KDM5B-based targeting. Pharmacol Res 2019; 141:1-20. [DOI: 10.1016/j.phrs.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 12/28/2022]
|
8
|
Kwon WS, Kim YJ, Ryu DY, Kwon KJ, Song WH, Rahman MS, Pang MG. Fms-like tyrosine kinase 3 is a key factor of male fertility. Theriogenology 2018; 126:145-152. [PMID: 30553232 DOI: 10.1016/j.theriogenology.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 01/14/2023]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a type III kinase that is highly expressed in seminal plasma of infertile men. FLT3 activation can be blocked by inhibition of its phosphorylation using the nontoxic and selective inhibitor, quizartinib. We investigated the function of FLT3 and the corresponding effects of quizartinib in mouse spermatozoa. Spermatozoa were treated with different concentrations (0.1, 1, 10, 20, and 30 μM) of quizartinib for 90 min at 37 °C in 5% CO2 in air. FLT3 was detected in capacitated and non-capacitated spermatozoa. While the level of FLT3 was unaffected, the levels of phospho-FLT3 were significantly altered in spermatozoa by quizartinib. Exposure of spermatozoa to higher concentrations of quizartinib significantly altered sperm viability, motility, motion kinematics, levels of intracellular ATP, and capacitation status. Fertilization and early embryonic development were suppressed by quizartinib. This may have occurred as a consequence of decreased protein kinase A (PKA) activity and tyrosine phosphorylation. The inhibition of FLT3 by quizartinib may affect the fertilization and embryonic development by reducing tyrosine phosphorylation through a PKA-dependent pathway. Our data implicate FLT3 as a biomarker for diagnosis and prognosis of male fertility. In addition, quizartinib has potential for development as a new contraceptive agent.
Collapse
Affiliation(s)
- Woo-Sung Kwon
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Ye-Ji Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Ki-Jin Kwon
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Won-Hee Song
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
9
|
Donà G, Andrisani A, Tibaldi E, Brunati AM, Sabbadin C, Armanini D, Ambrosini G, Ragazzi E, Bordin L. Astaxanthin Prevents Human Papillomavirus L1 Protein Binding in Human Sperm Membranes. Mar Drugs 2018; 16:md16110427. [PMID: 30400141 PMCID: PMC6266165 DOI: 10.3390/md16110427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/29/2022] Open
Abstract
Astaxanthin (Asta), red pigment of the carotenoid family, is known for its anti-oxidant, anti-cancer, anti-diabetic, and anti-inflammatory properties. In this study, we evaluated the effects of Asta on isolated human sperm in the presence of human papillomavirus (HPV) 16 capsid protein, L1. Sperm, purified by gradient separation, were treated with HPV16-L1 in both a dose and time-dependent manner in the absence or presence of 30 min-Asta pre-incubation. Effects of HPV16-L1 alone after Asta pre-incubation were evaluated by rafts (CTB) and Lyn dislocation, Tyr-phosphorylation (Tyr-P) of the head, percentages of acrosome-reacted cells (ARC) and endogenous reactive oxygen species (ROS) generation. Sperm membranes were also analyzed for the HPV16-L1 content. Results show that HPV16-L1 drastically reduced membrane rearrangement with percentage of sperm showing head CTB and Lyn displacement decreasing from 72% to 15.8%, and from 63.1% to 13.9%, respectively. Accordingly, both Tyr-P of the head and ARC decreased from 68.4% to 10.2%, and from 65.7% to 14.6%, respectively. Asta pre-incubation prevented this drop and restored values of the percentage of ARC up to 40.8%. No alteration was found in either the ROS generation curve or sperm motility. In conclusion, Asta is able to preserve sperm by reducing the amount of HPV16-L1 bound onto membranes.
Collapse
Affiliation(s)
- Gabriella Donà
- Department of Molecular Medicine-Biological Chemistry, University of Padova, 35131 Padova, Italy.
| | - Alessandra Andrisani
- Department of Women's and Chilren's Health, University of Padova, 35131 Padova, Italy.
| | - Elena Tibaldi
- Department of Molecular Medicine-Biological Chemistry, University of Padova, 35131 Padova, Italy.
| | - Anna Maria Brunati
- Department of Molecular Medicine-Biological Chemistry, University of Padova, 35131 Padova, Italy.
| | - Chiara Sabbadin
- Department of Medicine-Endocrinology, University of Padova, 35131 Padova, Italy.
| | - Decio Armanini
- Department of Medicine-Endocrinology, University of Padova, 35131 Padova, Italy.
| | - Guido Ambrosini
- Department of Women's and Chilren's Health, University of Padova, 35131 Padova, Italy.
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Luciana Bordin
- Department of Molecular Medicine-Biological Chemistry, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
10
|
Rahman MS, Kwon WS, Ryu DY, Khatun A, Karmakar PC, Ryu BY, Pang MG. Functional and Proteomic Alterations of F1 Capacitated Spermatozoa of Adult Mice Following Gestational Exposure to Bisphenol A. J Proteome Res 2017; 17:524-535. [PMID: 29198108 DOI: 10.1021/acs.jproteome.7b00668] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies regarding bisphenol A (BPA) exposure and male (in)fertility have conventionally focused on modifications in ejaculated spermatozoa function from exposed individuals. However, mammalian spermatozoa are incapable of fertilization prior to achieving capacitation, the penultimate step in maturation. Therefore, it is necessary to investigate BPA-induced changes in capacitated spermatozoa and assess the consequences on subsequent fertilization. Here, we demonstrate the effect of gestational BPA exposure (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on the functions, biochemical properties, and proteomic profiles of F1 capacitated spermatozoa from adult mice. The data showed that high concentrations of BPA inhibited motility, motion kinematics, and capacitation of spermatozoa, perhaps because of increased lipid peroxidation and protein tyrosine nitration, and decreased intracellular ATP levels and protein kinase-A activity in spermatozoa. We also found that BPA compromised the rates of fertilization and early embryonic development. Differentially expressed proteins identified between BPA-exposed and control groups play a critical role in energy metabolism, stress responses, and fertility. Protein function abnormalities were responsible for the development of several diseases according to bioinformatics analysis. On the basis of these results, gestational exposure to BPA may alter capacitated spermatozoa function and the proteomic profile, ultimately affecting their fertility potential.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Amena Khatun
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Polash Chandra Karmakar
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| |
Collapse
|
11
|
Ryu DY, Kim KU, Kwon WS, Rahman MS, Khatun A, Pang MG. Peroxiredoxin activity is a major landmark of male fertility. Sci Rep 2017; 7:17174. [PMID: 29215052 PMCID: PMC5719347 DOI: 10.1038/s41598-017-17488-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/28/2017] [Indexed: 11/09/2022] Open
Abstract
Peroxiredoxins (PRDXs) are important antioxidant enzymes reported to have a role in sperm function and male fertility. However, how PRDXs affects male fertility remain fundamental unanswered questions. We therefore sought to investigate the role of these enzymes in sperm function and fertilisation. In this in vitro trial, mouse spermatozoa were incubated with different concentrations of conoidin A (1, 10, or 100 µM), a specific inhibitor of PRDXs. Our results demonstrated that inhibition of PRDXs by conoidin A significantly decreased the oxidized form of peroxiredoxins (PRDXs-SO3) in spermatozoa. Decreased PRDX activity was associated with a significant reduction in sperm motility parameters, viability, and intracellular ATP, whereas ROS levels, DNA fragmentation, and loss of mitochondrial membrane potential were increased. Simultaneously capacitation and the acrosome reaction were also significantly inhibited perhaps as a consequence of decreased tyrosine phosphorylation and protein kinase-A activity. In addition, fertilisation and early embryonic development were adversely affected following PRDXs inhibition in spermatozoa. Taken together, our data demonstrate that decreased PRDX activity directly affects male fertility due to negative effects on important functions and biochemical properties of spermatozoa, ultimately leading to poor fertilisation and embryonic development.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Ki-Uk Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Amena Khatun
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea.
| |
Collapse
|
12
|
Khatun A, Rahman MS, Ryu DY, Kwon WS, Pang MG. Elevated aminopeptidase N affects sperm motility and early embryo development. PLoS One 2017; 12:e0184294. [PMID: 28859152 PMCID: PMC5578674 DOI: 10.1371/journal.pone.0184294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
Aminopeptidase N (APN) is a naturally occurring ectopeptidase present in mammalian semen. Previous studies have demonstrated that APN adversely affects male fertility through the alteration of sperm motility. This enzyme constitutes 0.5 to 1% of the seminal plasma proteins, which can be transferred from the prostasomes to sperms by a fusion process. In the present study, we investigated the molecular mechanism of action of APN and its role in regulating sperm functions and male fertility. In this in vitro study, epididymal mouse spermatozoa were incubated in a capacitating media (pH 7) containing 20 ng/mL of recombinant mouse APN for 90 min. Our results demonstrated that the supplementation of recombinant APN in sperm culture medium significantly increased APN activity, and subsequently altered motility, hyperactivated motility, rapid and medium swimming speeds, viability, and the acrosome reaction of mouse spermatozoa. These effects were potentially caused by increased toxicity in the spermatozoa. Further, altered APN activity in sperm culture medium affected early embryonic development. Interestingly, the effect of elevated APN activity in sperm culture medium was independent of protein tyrosine phosphorylation and protein kinase A activity. On the basis of these results, we concluded that APN plays a significant role in the regulation of several sperm functions and early embryonic development. In addition, increased APN activity could potentially lead to several adverse consequences related to male fertility.
Collapse
Affiliation(s)
- Amena Khatun
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Yoon SJ, Rahman MS, Kwon WS, Ryu DY, Park YJ, Pang MG. Proteomic identification of cryostress in epididymal spermatozoa. J Anim Sci Biotechnol 2016; 7:67. [PMID: 27895910 PMCID: PMC5117493 DOI: 10.1186/s40104-016-0128-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022] Open
Abstract
Background Cryopreservation of epididymal spermatozoa is important in cases in which it is not possible to collect semen using normal methods, as the sudden death of an animal or a catastrophic injury. However, the freezing and thawing processes cause stress to spermatozoa, including cold shock, osmotic damage, and ice crystal formation, thereby reducing sperm quality. We assessed the motility (%), motion kinematics, capacitation status, and viability of spermatozoa using computer-assisted sperm analysis and Hoechst 33258/chlortetracycline fluorescence staining. Moreover, we identified proteins associated with cryostress using a proteomic approach and performed western blotting to validate two-dimensional electrophoresis (2-DE) results using two commercial antibodies. Results Cryopreservation reduced viability (%), motility (%), straight-line velocity (VSL), average path velocity (VAP), amplitude of lateral head displacement (ALH), and capacitated spermatozoa, whereas straightness (STR) and the acrosome reaction increased after cryopreservation (P < 0.05). Nine proteins were differentially expressed (two proteins decreased and seven increased) (>3 fold, P < 0.05) before and after cryopreservation. The proteins differentially expressed following cryopreservation are putatively related to several signaling pathways, including the ephrinR-actin pathway, the ROS metabolism pathway, actin cytoskeleton assembly, actin cytoskeleton regulation, and the guanylate cyclase pathway. Conclusion The results of the current study provide information on epididymal sperm proteome dynamics and possible protein markers of cryo-stress during cryopreservation. This information will further the basic understanding of cryopreservation and aid future studies aiming to identify the mechanism of cryostress responses.
Collapse
Affiliation(s)
- Sung Jae Yoon
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756 Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756 Republic of Korea
| | - Woo Sung Kwon
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756 Republic of Korea
| | - Do Yeal Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756 Republic of Korea
| | - Yoo Jin Park
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756 Republic of Korea
| | - Myung Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756 Republic of Korea
| |
Collapse
|
14
|
Chen SM, Chen XM, Lu YL, Liu B, Jiang M, Ma YX. Cofilin is correlated with sperm quality and influences sperm fertilizing capacity in humans. Andrology 2016; 4:1064-1072. [PMID: 27369112 DOI: 10.1111/andr.12239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023]
Affiliation(s)
- S. M. Chen
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - X. M. Chen
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
- Department of Laboratory Medicine; Sichuan Provincial Hospital for Women and Children; Chengdu Sichuan China
| | - Y. L. Lu
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
| | - B. Liu
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - M. Jiang
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - Y. X. Ma
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
| |
Collapse
|
15
|
Delgado-Buenrostro NL, Mújica A, Chiquete-Felix N, Déciga-Alcaraz A, Medina-Reyes EI, Uribe-Carvajal S, Chirino YI. Role of Wasp and the small GTPases RhoA, RhoB, and Cdc42 during capacitation and acrosome reaction in spermatozoa of English guinea pigs. Mol Reprod Dev 2016; 83:927-937. [PMID: 27182927 DOI: 10.1002/mrd.22657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/07/2016] [Indexed: 11/08/2022]
Abstract
Cytoskeleton remodeling is necessary for capacitation and the acrosome reaction in spermatozoa. F-actin is located in the acrosome and equatorial region during capacitation, but is relocated in the post-acrosomal region during the acrosome reaction in spermatozoa from bull, rat, mice, and guinea pig. Actin polymerization and relocalization are generally regulated by small GTPases that activate Wasp protein, which coordinates with Arp2/3, profilin I, and profilin II to complete cytoskeletal remodeling. This sequence of events is not completely described in spermatozoa, though. Therefore, the aim of this study was to determine if Wasp interacts with small GTPases (RhoA, RhoB, and Cdc42) and proteins (Arp2/3, profilin I, and profilin II) that co-localize with F-actin during capacitation and the acrosome reaction in English guinea pig spermatozoa obtained from the vas deferens. The spermatozoa were capacitated in calcium-free medium, incubated with an activator or an inhibitor of GTPases, and then induced to acrosome react using calcium. The distribution patterns of F-actin were compared to the patterns of Wasp and its putative interaction partners: Wasp and RhoB, but not RhoA or Cdc42, localization overlap with F-actin during capacitation and the acrosome reaction. Activation of small GTPases localized RhoB to the post-acrosomal region whereas their inhibition prevented acrosome exocytosis. Arp2/3 and profilin II appear to interact with Wasp in the post-acrosomal region and flagellum, while profilin I and Wasp could be found in the equatorial region. Thus, Wasp and F-actin distribution overlap during capacitation and acrosome reaction, and small GTPases play an important role in cytoskeleton remodeling during these processes in spermatozoa. Mol. Reprod. Dev. 83: 927-937, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Norma L Delgado-Buenrostro
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.,Sección de Bioquímica y Farmacología Humana, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán, Estado de México, CP 54743
| | - Adela Mújica
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México, CP 07360
| | - Natalia Chiquete-Felix
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México, CP 04510
| | - Alejandro Déciga-Alcaraz
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CP 07360
| | - Estefany I Medina-Reyes
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CP 07360
| | - Salvador Uribe-Carvajal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México, CP 04510
| | - Yolanda I Chirino
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.
| |
Collapse
|
16
|
Role of Actin Cytoskeleton During Mammalian Sperm Acrosomal Exocytosis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:129-44. [PMID: 27194353 DOI: 10.1007/978-3-319-30567-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian sperm require to undergo an exocytotic process called acrosomal exocytosis in order to be able to fuse with the oocyte. This ability is acquired during the course of sperm capacitation. This review is focused on one aspect related to this acquisition: the role of the actin cytoskeleton. Evidence from different laboratories indicates that actin polymerization occurs during capacitation, and the detection of several actin-related proteins suggests that the cytoskeleton is involved in important sperm functions. In other mammalian cells, the cortical actin network acts as a dominant negative clamp which blocks constitutive exocytosis but, at the same time, is necessary to prepare the cell to undergo regulated exocytosis. Thus, F-actin stabilizes structures generated by exocytosis and supports the physiological progression of this process. Is this also the case in mammalian sperm? This review summarizes what is currently known about actin and its related proteins in the male gamete, with particular emphasis on their role in acrosomal exocytosis.
Collapse
|
17
|
Astaxanthin Improves Human Sperm Capacitation by Inducing Lyn Displacement and Activation. Mar Drugs 2015; 13:5533-51. [PMID: 26308013 PMCID: PMC4584338 DOI: 10.3390/md13095533] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
Astaxanthin (Asta), a photo-protective red pigment of the carotenoid family, is known for its multiple beneficial properties. In this study, the effects of Asta on isolated human sperm were evaluated. Capacitation involves a series of transformations to let sperm acquire the correct features for potential oocyte fertilization, including the generation of a controlled amount of reactive oxygen species (ROS), cholesterol depletion of the sperm outer membrane, and protein tyrosine phosphorylation (Tyr-P) process in the head region. Volunteers, with normal spermiogram values, were divided in two separate groups on the basis of their ability to generate the correct content of endogenous ROS. Both patient group (PG) and control group (CG) were analysed for Tyr-phosphorylation (Tyr-P) pattern and percentages of acrosome-reacted cells (ARC) and non-viable cells (NVC), in the presence or absence of Asta. In addition, the involvement of ROS on membrane reorganization and the presence of Lyn, a Src family kinase associated with lipid rafts, were investigated. Results show that Lyn is present in the membranes of human sperm, mainly confined in midpiece in resting conditions. Following capacitation, Lyn translocated to the head concomitantly with raft relocation, thus allowing the Tyr-P of head proteins. Asta succeeded to trigger Lyn translocation in PG sperm thus bypassing the impaired ROS-related mechanism for rafts and Lyn translocation. In this study, we showed an interdependence between ROS generation and lipid rafts and Lyn relocation leading the cells to undergo the successive acrosome reaction (AR). Asta, by ameliorating PG sperm functioning, may be utilised to decrease male idiopathic infertility.
Collapse
|