1
|
Edmond MA, Hinojo-Perez A, Efrem M, Yi-Chun L, Shams I, Hayoz S, de la Cruz A, Perez Rodriguez ME, Diaz-Solares M, Dykxhoorn DM, Luo YL, Barro-Soria R. Lipophilic compounds restore function to neurodevelopmental-associated KCNQ3 mutations. Commun Biol 2024; 7:1181. [PMID: 39300259 DOI: 10.1038/s42003-024-06873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
A major driver of neuronal hyperexcitability is dysfunction of K+ channels, including voltage-gated KCNQ2/3 channels. Their hyperpolarized midpoint of activation and slow activation and deactivation kinetics produce a current that regulates membrane potential and impedes repetitive firing. Inherited mutations in KCNQ2 and KCNQ3 are linked to a wide spectrum of neurodevelopmental disorders (NDDs), ranging from benign familial neonatal seizures to severe epileptic encephalopathies and autism spectrum disorders. However, the impact of these variants on the molecular mechanisms underlying KCNQ3 channel function remains poorly understood and existing treatments have significant side effects. Here, we use voltage clamp fluorometry, molecular dynamic simulations, and electrophysiology to investigate NDD-associated variants in KCNQ3 channels. We identified two distinctive mechanisms by which loss- and gain-of function NDD-associated mutations in KCNQ3 affect channel gating: one directly affects S4 movement while the other changes S4-to-pore coupling. MD simulations and electrophysiology revealed that polyunsaturated fatty acids (PUFAs) primarily target the voltage-sensing domain in its activated conformation and form a weaker interaction with the channel's pore. Consistently, two such compounds yielded partial and complete functional restoration in R227Q- and R236C-containing channels, respectively. Our results reveal the potential of PUFAs to be developed into therapies for diverse KCNQ3-based channelopathies.
Collapse
Affiliation(s)
- Michaela A Edmond
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Texas A&M University Health Science Center, Department of Neuroscience & Experimental Therapeutics, Bryan, USA
| | - Andy Hinojo-Perez
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mekedlawit Efrem
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Lin Yi-Chun
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Iqra Shams
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sebastien Hayoz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Physiology, University of Arizona, Tucson, USA
| | - Alicia de la Cruz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Linkoping University, Department of Biomedical and Clinical Sciences (BKV), Linkoping, Sweden
| | | | - Maykelis Diaz-Solares
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yun Lyna Luo
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Rene Barro-Soria
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
2
|
Brahmachari G. Practice of green chemistry strategies in synthetic organic chemistry: a glimpse of our sincere efforts in green chemistry research. Chem Commun (Camb) 2024; 60:8153-8169. [PMID: 38978452 DOI: 10.1039/d4cc02249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This feature article summarises our recent contributions (2019-2023) in designing and developing a handful of promising organic transformations for accessing several diversely functionalised biologically relevant organic scaffolds, following the green chemistry principles, particularly focusing on the application of low-energy visible light, electrochemistry, ball-milling, ultrasound, and catalyst- and additive-free synthetic strategies.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India.
| |
Collapse
|
3
|
Elattar MM, Hammoda HM, Ghareeb DA, Abdulmalek SA, Abdelrahim FA, Seif IAK, Dawood HM, Darwish RS. Insights into bioactive constituents of onion (Allium cepa L.) waste: a comparative metabolomics study enhanced by chemometric tools. BMC Complement Med Ther 2024; 24:271. [PMID: 39010091 PMCID: PMC11250982 DOI: 10.1186/s12906-024-04559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Onion waste was reported to be a valuable source of bioactive constituents with potential health-promoting benefits. This sparked a surge of interest among scientists for its valorization. This study aims to investigate the chemical profiles of peel and root extracts of four onion cultivars (red, copper-yellow, golden yellow and white onions) and evaluate their erectogenic and anti-inflammatory potentials. METHODS UPLC-QqQ-MS/MS analysis and chemometric tools were utilized to determine the chemical profiles of onion peel and root extracts. The erectogenic potential of the extracts was evaluated using the PDE-5 inhibitory assay, while their anti-inflammatory activity was determined by identifying their downregulating effect on the gene expression of IL-6, IL-1β, IFN-γ, and TNF-α in LPS-stimulated WBCs. RESULTS A total of 103 metabolites of diverse chemical classes were identified, with the most abundant being flavonoids. The organ's influence on the chemical profiles of the samples outweighed the influence of the cultivar, as evidenced by the close clustering of samples from the same organ compared to the distinct separation of root and peel samples from the same cultivar. Furthermore, the tested extracts demonstrated promising PDE-5 and anti-inflammatory potentials and effectively suppressed the upregulation of pro-inflammatory markers in LPS-stimulated WBCs. The anti-inflammatory activities exerted by peel samples surpassed those of root samples, highlighting the importance of selecting the appropriate organ to maximize activity. The main metabolites correlated with PDE-5 inhibition were cyanidin 3-O-(malonyl-acetyl)-glucoside and quercetin dimer hexoside, while those correlated with IL-1β inhibition were γ-glutamyl-methionine sulfoxide, γ-glutamyl glutamine, sativanone, and stearic acid. Taxifolin, 3'-hydroxymelanettin, and oleic acid were highly correlated with IL-6 downregulation, while quercetin 4'-O-glucoside, isorhamnetin 4'-O-glucoside, and p-coumaroyl glycolic acid showed the highest correlation to IFN-γ and TNF-α inhibition. CONCLUSION This study provides a fresh perspective on onion waste as a valuable source of bioactive constituents that could serve as the cornerstone for developing new, effective anti-PDE-5 and anti-inflammatory drug candidates.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA- city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Fatma A Abdelrahim
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas A K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
4
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
5
|
Pethő Z, Pajtás D, Piga M, Magyar Z, Zakany F, Kovacs T, Zidar N, Panyi G, Varga Z, Papp F. A synthetic flavonoid derivate in the plasma membrane transforms the voltage-clamp fluorometry signal of CiHv1. FEBS J 2024; 291:2354-2371. [PMID: 38431775 DOI: 10.1111/febs.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Voltage-clamp fluorometry (VCF) enables the study of voltage-sensitive proteins through fluorescent labeling accompanied by ionic current measurements for voltage-gated ion channels. The heterogeneity of the fluorescent signal represents a significant challenge in VCF. The VCF signal depends on where the cysteine mutation is incorporated, making it difficult to compare data among different mutations and different studies and standardize their interpretation. We have recently shown that the VCF signal originates from quenching amino acids in the vicinity of the attached fluorophores, together with the effect of the lipid microenvironment. Based on these, we performed experiments to test the hypothesis that the VCF signal could be altered by amphiphilic quenching molecules in the cell membrane. Here we show that a phenylalanine-conjugated flavonoid (4-oxo-2-phenyl-4H-chromene-7-yl)-phenylalanine, (later Oxophench) has potent effects on the VCF signals of the Ciona intestinalis HV1 (CiHv1) proton channel. Using spectrofluorimetry, we showed that Oxophench quenches TAMRA (5(6)-carboxytetramethylrhodamine-(methane thiosulfonate)) fluorescence. Moreover, Oxophench reduces the baseline fluorescence in oocytes and incorporates into the cell membrane while reducing the membrane fluidity of HEK293 cells. Our model calculations confirmed that Oxophench, a potent membrane-bound quencher, modifies the VCF signal during conformational changes. These results support our previously published model of VCF signal generation and point out that a change in the VCF signal may not necessarily indicate an altered conformational transition of the investigated protein.
Collapse
Affiliation(s)
- Zoltán Pethő
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
- Institut für Physiologie II, University of Münster, Germany
| | - Dávid Pajtás
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Martina Piga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Zsuzsanna Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Nace Zidar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
6
|
El-Gindy YM, Zahran SM, Hassan MA, Sabir SA. Effect on physiological parameters and semen quality upon oral administration of fresh onion juice to V-line rabbit buck during severe heat stress. Anim Biotechnol 2023; 34:2073-2081. [PMID: 35544609 DOI: 10.1080/10495398.2022.2070184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Severe heat stress is recognized as a factor that severely influences the semen quality and antioxidant status of rabbits. In this context, fresh onion juice (FOJ) may be a safe and useful option to improve reproductive performance. This research was designed to evaluate the anti-stress effects of FOJ on physiological and semen parameters in heat-stressed bucks. Thirty-six V-line rabbit bucks were randomly distributed into three groups. The bucks received FOJ orally at different doses [0 (water), 1.5, and 3 ml/kg live body weight] every 2 days over a period of 2 months, with 3 weeks as an adaptation period. FOJ treatments significantly improved semen characteristics, such as libido, mass and individual sperm motility, semen concentration, sperm viability, and acrosome reaction with increased initial seminal fructose, via the oral administration of 1.5 and 3 mL FOJ/kg body weight, compared with the findings in control bucks. Seminal plasma antioxidant status was significantly enhanced by FOJ treatments. It was concluded that the oral administration of FOJ under severe heat stress can improve bucks' semen characteristics and sex hormone concentrations except for testosterone, and it is considered a good strategy for improving the heat resistance of rabbit bucks, possibly due to its antioxidant activity.
Collapse
Affiliation(s)
- Yassmine M El-Gindy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Soliman M Zahran
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed A Hassan
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Salem A Sabir
- Animal Production Department, Faculty of Agriculture, Omer Al-Mukhtar University, Bieda, Libya
| |
Collapse
|
7
|
Xu YN, Han GB, Li YH, Piao CH, Li GH, Kim NH. Protective effect of onion peel extract on ageing mouse oocytes. ZYGOTE 2023; 31:451-456. [PMID: 37337719 DOI: 10.1017/s0967199423000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Mammalian oocytes not fertilized immediately after ovulation can undergo ageing and a rapid decline in quality. The addition of antioxidants can be an efficient approach to delaying the oocyte ageing process. Onion peel extract (OPE) contains quercetin and other flavonoids with natural antioxidant activities. In this study, we investigated the effect of OPE on mouse oocyte ageing and its mechanism of action. The oocytes were aged in vitro in M16 medium for 16 h after adding OPE at different concentrations (0, 50, 100, 200, and 500 μg/ml). The addition of 100 μg/ml OPE reduced the oocyte fragmentation rate, decreased the reactive oxygen species (ROS) level, increased the glutathione (GSH) level, and improved the mitochondrial membrane potential compared with the control group. The addition of OPE also increased the expression of SOD1, CAT, and GPX3 genes, and the caspase-3 activity in OPE-treated aged oocytes was significantly lower than that in untreated aged oocytes and similar to that in fresh oocytes. These results indicated that OPE delayed mouse oocyte ageing by reducing oxidative stress and apoptosis and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Yong-Nan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Guo-Bo Han
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Ying-Hua Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| | - Chun-Hao Piao
- Jilin Wangqing Animal Quarantine Station, Wangqing, 133200, China
| | - Guan-Hao Li
- College of Agriculture, Yanbian University, Yanji, 133000, China
| | - Nam-Hyung Kim
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529000, China
| |
Collapse
|
8
|
Kyarimpa C, Nagawa CB, Omara T, Odongo S, Ssebugere P, Lugasi SO, Gumula I. Medicinal Plants Used in the Management of Sexual Dysfunction, Infertility and Improving Virility in the East African Community: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6878852. [PMID: 37600549 PMCID: PMC10439835 DOI: 10.1155/2023/6878852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Sexual disorders such as erectile dysfunction (ED), sterility, and sexual inappetence represent some of the complex reproductive challenges that require addressing the underlying causes. The aim of this paper was to systematically synthesize literature on the ethnobotany, phytochemistry, bioactivities, and safety of plants used as remedies for managing sexual dysfunction and infertility, and improving fertility and virility in the EAC. Through an extensive review conducted in multidisciplinary electronic databases, 171 plant species were identified to have been reported for the management of sexual inappetence (i.e., used as aphrodisiacs, 39.4%), ED (35.9%), infertility (18.7%), and increasing fertility (6.0%). The most used plants are Mondia whitei, Acalypha villicaulis, Combretum illairii, Erythrina abyssinica, Pappea capensis, Rhus vulgaris, and Warburgia ugandensis while roots (44.9%), leaves (21.8%), stem and root barks (16.7%) of shrubs (35%), trees (31%), herbs (26%), and climbers (8%) are the preferred organs for making decoctions (69%). The research strides to date indicate that Citropsis articulata, Cola acuminata, Ekebergia capensis, Plumbago zeylanica, Tarenna graveolens, Urtica massaica, and Zingiber officinale have been assessed for their bioactivity. The majority (71.4%) of the plants either increased testosterone levels and mounting frequency or elicited prosexual stimulatory effects in male rats. More studies investigating the relevant pharmacological activities (aphrodisiac, fertility, and phosphodiesterase-5 inhibitory activities), safety aspects, responsible compounds, and clinical studies are warranted to establish the pharmacological potential of the unstudied species and elucidate the mechanism of action of the bioactive compounds.
Collapse
Affiliation(s)
- Christine Kyarimpa
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Christine Betty Nagawa
- Department of Forestry, Biodiversity and Tourism, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Timothy Omara
- Chemistry Division (Food Safety Laboratories), Testing Department, Standards Directorate, Uganda National Bureau of Standards, P.O. Box 6329, Kampala, Uganda
| | - Silver Odongo
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Solomon Omwoma Lugasi
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210, Bondo 40601, Kenya
| | - Ivan Gumula
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| |
Collapse
|
9
|
Kim JS, Lee EB, Choi JH, Jung J, Jeong UY, Bae UJ, Jang HH, Park SY, Cha YS, Lee SH. Antioxidant and Immune Stimulating Effects of Allium cepa Skin in the RAW 264.7 Cells and in the C57BL/6 Mouse Immunosuppressed by Cyclophosphamide. Antioxidants (Basel) 2023; 12:antiox12040892. [PMID: 37107267 PMCID: PMC10135734 DOI: 10.3390/antiox12040892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Allium cepa L. (onion) has been reported to have various pharmacological effects, such as preventing heart disease, and improving antimicrobial activity and immunological effects. The Republic of Korea produced 1,195,563 tons of onions (2022). The flesh of onion is used as food while the onion skin (OS) is thrown away as an agro-food by-product and is considered to induce environmental pollution. Thus, we hypothesize that increasing usage of OS as functional food material could help protect from the environment pollution. The antioxidant effects and immune-enhancing effects of OS were evaluated as functional activities of OS. In this study, OS showed high 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and xanthine oxidase (XO) inhibitory activity. The antioxidant activities increased in a dose-dependent manner. The IC50 values of DPPH, ABTS radical scavenging activity, and XO inhibitory activity were 954.9 μg/mL, 28.0 μg/mL, and 10.7 μg/mL, respectively. Superoxide dismutase and catalase activities of OS in RAW 264.7 cells were higher than those of the media control. There was no cytotoxicity of OS found in RAW 264.7 cells. Nitric oxide and cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) concentrations in RAW 264.7 cells significantly increased in a dose dependent manner. Immune-stimulating effects of OS were evaluated in immunosuppressed mice induced by cyclophosphamide. White blood cell count and the B cell proliferation of splenocytes were higher in OS100 (OS extract 100 mg/kg body weight) and OS200 (OS extract 200 mg/kg body weight) groups than in the negative control (NC) group. Serum IgG and cytokine (IL-1β and IFN-γ) levels were also higher in OS100 and OS200 groups than in the NC group. OS treatment increased NK cell activity compared with the NC group. The results suggested that OS can improve antioxidant and immune stimulating effects. The use of OS as functional supplement can reduce the agro-food by-product and it may contribute to carbon neutrality.
Collapse
Affiliation(s)
- Ji-Su Kim
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Eun-Byeol Lee
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ji-Hye Choi
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jieun Jung
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Un-Yul Jeong
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ui-Jin Bae
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hwan-Hee Jang
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Shin-Young Park
- Fermented and Processed Food Science Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, 567 Baekje-Daero, Jeonju 54896, Republic of Korea
| | - Sung-Hyen Lee
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
10
|
Al-Tawalbeh D, Bdeir R, Al-Momani J. The Use of Medicinal Herbs to Treat Male Infertility in Jordan: Evidence-Based Review. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/42rwhfit62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Vishwkarma AK, Yadav T, Brahmachari G, Karmakar I, Yadav P, Saha S, Mahapatra C, Pandey GN, Tripathi CSP, Tripathi PK, Verma VK, Pathak A. Conformational Search and Spectroscopic Analysis of Biorelevant Molecule: 5-Chloro-2-hydroxy- N-isobutyl-3-oxo-2,3-dihydrobenzofuran-2-carboxamide. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2135546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. K. Vishwkarma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - T. Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - G. Brahmachari
- Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal, India
| | - I. Karmakar
- Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal, India
| | - P. Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - S. Saha
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - C. Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - G. N. Pandey
- Department of Applied Physics, AIAS, Amity University, Noida, Uttar Pradesh, India
| | - C. S. P. Tripathi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - P. K. Tripathi
- Department of Physics, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - V. K. Verma
- Department of Physics, Keshav Mahavidyalay, University of Delhi, Delhi, India
| | - A. Pathak
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
13
|
Structural confirmation and spectroscopic signature of N-Allyl-2-hydroxy-5-methyl-3-oxo-2, 3-dihydrobenzofuran-2-carboxamide and its monohydrate cluster. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Kim JH, Chae MR, Wijerathne TD, Cooray AD, Kim CY, Lee SW, Lee KP. In vitro assessment of Prunus japonica seed extract on human spermatozoa hypermotility and intracellular alkalization. Andrologia 2022; 54:e14471. [PMID: 35590125 DOI: 10.1111/and.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Prunus japonica var. nakaii is used in traditional Korean medicine to treat various conditions; however, it has not been investigated for treating male infertility. In this study, we investigated the in vitro effects of the ethanolic extract of P. japonica seeds on human sperm motility and identified its mechanism of action. Eleven male volunteers were selected, and the effects of the extract on human spermatozoa were assessed through a computer-assisted semen analysis. The P. japonica seed extract increased the percentage of total and progressive motility of spermatozoa. To understand the mechanism of action, we monitored intracellular alkalization using flow cytometry and obtained electrophysiological recordings of human voltage-gated proton channels hHv1 that were overexpressed in HEK-293 cells. The extract shifted the activation curves in a concentration-dependent manner. Two major constituents of the extract, linoleic acid and oleic acid, exhibited proton channel activity. Our in vitro experiments suggested that P. japonica seed extract could be potentially used to rescue sperm motility in idiopathic infertility patients via pharmacological modulation of the proton channels during capacitation. Therefore, our results indicate the therapeutic potential of P. japonica seed extract for treating male infertility.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Mee Ree Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tharaka Darshana Wijerathne
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Akila Dushyantha Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
15
|
Bahmanpour S, Keshavarz M, Koohpeyma F, Badr P, Noori A, Dabbaghmanesh MH, Poordast T, Najib FS, Zare N, Namazi N, Jahromi BN. Preserving effect of Loboob (a traditional multi-herbal formulation) on sperm parameters of male rats with busulfan-induced subfertility. JBRA Assist Reprod 2022; 26:574-582. [PMID: 34995049 PMCID: PMC9635600 DOI: 10.5935/1518-0557.20210099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Male infertility secondary to exposure to gonadotoxic agents during reproductive age is a concerning issue. The aim of this experimental study was to determine the effect of Loboob on sperm parameters. METHODS 55 healthy rats were selected, weighted and divided into five groups consisting of 11 rats each. The control group received no medication. Rats in Treatment Group 1 received 10mg/kg Busulfan and rats in Treatment Groups 2, 3, and 4 received 35,70 and 140 mg/kg Loboob respectively in addition to 10mg/kg Busulfan. Finally, the sperm parameters and weights of the rats were compared using the Kolmogorov-Smirnov, non-parametric Kruskal-Wallis, and Dunn-Bonferroni tests. RESULTS All sperm parameters and weights were significantly decreased among rats receiving Busulfan. All dosages of Loboob were effective to enhance the motility of slow spermatozoa, while only in the rats given 70 and 140 mg/kg of Loboob saw improvements in progressively motile sperm percentages (0.024 and 0.01, respectively). Loboob at a dosage of 140mg/kg improved sperm viability. It did not improve normal morphology sperm or decrease immotile sperm counts. Loboob did not affect mean rat weight. CONCLUSIONS Loboob offered a dose-dependent protective effect on several sperm parameters in rats with busulfan-induced subfertility.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Anatomy Department, School of Medicine, Shiraz University of
Medical Sciences, Shiraz, Iran , Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran
| | - Mojtaba Keshavarz
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran , Phytopharmaceutical Technology and Traditional Medicine Incubator,
Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adel Noori
- Student Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | | | - Tahereh Poordast
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Najib
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Najaf Zare
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Biostatistics, School of Medicine, Shiraz University
of Medical Sciences, Shiraz, Iran
| | - Niloofar Namazi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran ,Corresponding author: Bahia Namavar Jahromi Department
of OB-GYN School of Medicine Shiraz University of Medical Sciences Shiraz, Iran.
E-mail:
| |
Collapse
|
16
|
Kumar M, Barbhai MD, Hasan M, Punia S, Dhumal S, Radha, Rais N, Chandran D, Pandiselvam R, Kothakota A, Tomar M, Satankar V, Senapathy M, Anitha T, Dey A, Sayed AAS, Gadallah FM, Amarowicz R, Mekhemar M. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed Pharmacother 2021; 146:112498. [PMID: 34953395 DOI: 10.1016/j.biopha.2021.112498] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/20/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Huge quantities of byproducts/wastes generated in onion processing are usually discarded, but they are excellent sources of bioactive compounds and phytochemicals. However, with growing interest in the sustainable use of resources and the circular economy to reduce adverse impacts on the environment, food processing wastes such as onion peel/skin can be extracted and employed as inputs in developing or reformulating nutrient supplements, and pharmacological drugs. This review highlights major bioactive components, especially total phenolics, total flavonoid, quercetin and its derivatives present in onion peel/skin and their therapeutic applications as cardioprotective, neuroprotective, antiobesity, antidiabetic, anticancer and antimicrobial agents. The present review emphasized that onion peel is one of the important agricultural by-products which is rich in bioactive compounds and can be utilized as health promoting ingredient especially in pharmacological and biomedical fields. Thus, with increasing burden of life style disorders/non-communicable diseases, finding suitable natural alternative for their treatment is one major concern of the researchers and onion peel and its extract can be exploited as a prime ingredient.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Mrunal D Barbhai
- Chemical and Biochemical Processing Division, ICAR - Central institute for Research on Cotton Technology, Mumbai 400019, India
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan 305004, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, Tamil Nadu, India
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124 Kerala, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum - 695091, Kerala, India
| | - Maharishi Tomar
- Seed Technology Division, ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Varsha Satankar
- Ginning Training Centre, ICAR - Central Institute for Research on Cotton Technology, Nagpur, Maharashtra, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, SNNPR, Wolaita Sodo, Ethiopia.
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; Division of Plant Physiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Farouk M Gadallah
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany.
| |
Collapse
|
17
|
Li Y, Lv H, Xue C, Dong N, Bi C, Shan A. Plant Polyphenols: Potential Antidotes for Lead Exposure. Biol Trace Elem Res 2021; 199:3960-3976. [PMID: 33236294 DOI: 10.1007/s12011-020-02498-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Lead is one of the most common heavy metal elements and has high biological toxicity. Long-term lead exposure will induce the contamination of animal feed, water, and food, which can cause chronic lead poisoning including nephrotoxicity, hepatotoxicity, neurotoxicity, and reproductive toxicity in humans and animals. In the past few decades, lead has caused widespread concern because of its significant threat to health. A large number of in vitro and animal experiments have shown that oxidative stress plays a key role in lead toxicity, and endoplasmic reticulum (ER) stress and the mitochondrial apoptosis pathway can also be induced by lead toxicity. Therefore, plant polyphenols have attracted attention, with their advantages of being natural antioxidants and having low toxicity. Plant polyphenols can resist lead toxicity by chelating lead with their special chemical molecular structure. In addition, scavenging active oxygen and improving the level of antioxidant enzymes, anti-inflammatory, and anti-apoptosis are also the key to relieving lead poisoning by plant polyphenols. Various plant polyphenols have been suggested to be useful in alleviating lead toxicity in animals and humans and are believed to have good application prospects.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Chongpeng Bi
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
18
|
Deciphering the Therapeutic Mechanisms of Wuzi Ershen Decoction in Treating Oligoasthenozoospermia through the Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5591844. [PMID: 34394386 PMCID: PMC8363445 DOI: 10.1155/2021/5591844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022]
Abstract
Background Infertility affects approximately 15% of couples around the world, and male factors are accounted for 40–50%. Oligoasthenozoospermia is the most common reason for male infertility. Unfortunately, effective drug therapy is still lacking except for assisted reproductive technology (ART). Previous researchers found that Wuzi Ershen decoction (WZESD) can increase sperm count, enhance sperm vitality, and improve semen quality. However, the pharmacological mechanisms remain unclear. Methods In this study, we screened compounds and predicted the targets of WZESD based on the TCMSP and BATMAN-TCM database combined with literature searching in the PubMed database. We obtained proteins related to oligoasthenozoospermia through GeneCards and submitted them to STRING to obtain the protein-protein interaction (PPI) network. Potential targets of WZESD were mapped to the network, and the hub targets were screened by topology. We used online platform Metascape and Enrichr for GO and KEGG enrichment analyses. AutoDock Vina was utilized for further verification of the binding mode between compounds and targets. Results Totally, 276 bioactive compounds were obtained and targeted 681 proteins. 446 oligoasthenozoospermia disease-specific proteins were acquired, and further bioinformatics analysis found that they were mainly involved in the formation of gametes, meiosis, and sperm differentiation. Protein interaction network analysis revealed that target proteins of WZESD were associated with oligoasthenozoospermia disease-specific proteins. The 79 targets of disease-specific proteins, which were anchored by WZESD, mainly participate in the cellular response to the organic cyclic compound, regulation of the apoptotic process, nitricoxide biosynthetic and metabolic process, oxidative stress, and protein phosphorylation regulation, which are the causes for oligoasthenozoospermia. Molecular docking simulation further validated that bioactive compounds originated from WZESD with targeted proteins showed high binding efficiency. Conclusions This study uncovers the therapeutic mechanisms of WZESD for oligoasthenozoospermia treatment from the perspective of network pharmacology and may provide a valuable reference for further experimental research studies and clinical applications.
Collapse
|
19
|
Aldana A, Carneiro J, Martínez-Mekler G, Darszon A. Discrete Dynamic Model of the Mammalian Sperm Acrosome Reaction: The Influence of Acrosomal pH and Physiological Heterogeneity. Front Physiol 2021; 12:682790. [PMID: 34349664 PMCID: PMC8328089 DOI: 10.3389/fphys.2021.682790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
The acrosome reaction (AR) is an exocytotic process essential for mammalian fertilization. It involves diverse physiological changes (biochemical, biophysical, and morphological) that culminate in the release of the acrosomal content to the extracellular medium as well as a reorganization of the plasma membrane (PM) that allows sperm to interact and fuse with the egg. In spite of many efforts, there are still important pending questions regarding the molecular mechanism regulating the AR. Particularly, the contribution of acrosomal alkalinization to AR triggering physiological conditions is not well understood. Also, the dependence of the proportion of sperm capable of undergoing AR on the physiological heterogeneity within a sperm population has not been studied. Here, we present a discrete mathematical model for the human sperm AR based on the physiological interactions among some of the main components of this complex exocytotic process. We show that this model can qualitatively reproduce diverse experimental results, and that it can be used to analyze how acrosomal pH (pH a ) and cell heterogeneity regulate AR. Our results confirm that a pH a increase can on its own trigger AR in a subpopulation of sperm, and furthermore, it indicates that this is a necessary step to trigger acrosomal exocytosis through progesterone, a known natural inducer of AR. Most importantly, we show that the proportion of sperm undergoing AR is directly related to the detailed structure of the population physiological heterogeneity.
Collapse
Affiliation(s)
- Andrés Aldana
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova, Oeiras, Portugal
| | - Gustavo Martínez-Mekler
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
20
|
Yu S, Li H, Cui T, Cui M, Piao C, Wang S, Ju M, Liu X, Zhou G, Xu H, Li G. Onion (Allium cepa L.) peel extract effects on 3T3-L1 adipocytes and high-fat diet-induced obese mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Sadogh A, Gorji N, Moeini R. Herbal foodstuffs in Avicenna's recommended diet to improve sperm quality and increase male fertility; an evidence-based approach. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:47-70. [PMID: 33544522 DOI: 10.1515/jcim-2020-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/02/2021] [Indexed: 11/15/2022]
Abstract
Attention to diet was considered important issues in improvement of men infertility in Persian Medicine (PM). The purpose of this study was to extract herbal foodstuffs introduced by Avicenna, one of the greatest PM physicians to improve the semen production and to provide evidence of their impact on the basis of current studies."Canon of Medicine", the most important Avecinna's book, was searched with keywords equivalent to semen, fertility and infertility, main herbal foodstuffs were extracted and was searched with keywords sperm, semen, infertility, and fertility in Google scholar, PubMed and Scopus databases. Manuscripts from 1950 up to December 2019 were selected and reviewed. Almond, Onion, Chickpea, Garlic, Coconut, Palm date, Sesame, Fenugreek, Carrot, Fig, Grapes, Pistachio, Hazelnut and Walnut are among main foodstuffs which recommended by Avicenna and there is also evidence that they have positive effects on testosterone production and improvement of various sperm parameters, including count, motility and morphology. Containing large amount of different macro and micronutrients such as vitamins including vit B, C, A and E, minerals such as Mg, Se, Zn, Cu and Fe, important unsaturated fatty acids such as linoleic and oleic acids, amino acids such as lysine and arginine and phytochemicals such as polyphenols, flavonoids, triterpenes and steroids can be considered as a main factor in the effectiveness of these foodstuffs. Designing a diet based on the fruits, vegetables, nuts and seeds that Avicenna has recommended, may be effective in treating male infertility but further studies are needed to clarify this issue. Research on the effectiveness of his other recommended foodsuffs may also offer new treatments and supplements for this purpose.
Collapse
Affiliation(s)
- Azita Sadogh
- Student Reseaerch Committee, Babol University of Medical Sciences, Babol, Iran
| | - Narjes Gorji
- Department of History of Medical Science, School of Persian medicine, Babol University of Medical Sciences, Tehran, Iran
| | - Reihaneh Moeini
- Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| |
Collapse
|
22
|
Brahmachari G, Karmakar I. Visible Light-Induced and Singlet Oxygen-Mediated Photochemical Conversion of 4-Hydroxy-α-benzopyrones to 2-Hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamides/carboxylates Using Rose Bengal as a Photosensitizer. J Org Chem 2020; 85:8851-8864. [DOI: 10.1021/acs.joc.0c00726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| |
Collapse
|
23
|
Karna KK, Choi BR, Kim MJ, Kim HK, Park JK. The Effect of Schisandra chinensis Baillon on Cross-Talk between Oxidative Stress, Endoplasmic Reticulum Stress, and Mitochondrial Signaling Pathway in Testes of Varicocele-Induced SD Rat. Int J Mol Sci 2019; 20:ijms20225785. [PMID: 31744253 PMCID: PMC6888522 DOI: 10.3390/ijms20225785] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Schisandra chinensis Baillon (SC) has been utilized for its antioxidants and anti-inflammatory activities in a broad variety of medical applications. However; SC uses for improving fertility in males and related disorders with proper scientific validation remain obscure. The present study aimed to investigate the effects of SC on varicocele (VC)-induced testicular dysfunction and the potential molecular mechanism associated with VC-induced germ cell apoptosis. The male Sprague–Dawley rats were equally divided into four groups consisting of 10 rats in a normal control group (CTR), a control group administered SC 200 mg/kg (SC 200), a varicocele-induced control group (VC), and a varicocele-induced group administered SC 200 mg/kg (VC + SC 200). Rats were administrated 200 mg/kg SC once daily for 28 days after induction of varicocele rats and sham controls. At the end of the treatment period, body and reproductive organ weight, sperm parameters, histopathological damages, proinflammatory cytokines, apoptosis markers, biomarkers of oxidative stress, endoplasmic reticulum (ER) stress, and steroidogenic acute regulatory protein (StAR) were evaluated. The effects of SC extract on human sperm motility were also analyzed. SC treatment reduces VC-induced testicular dysfunction by significantly increasing testicular weight, sperm count and sperm motility, serum testosterone level, Johnsen score, spermatogenic cell density, testicular superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase level, and steroidogenic acute regulatory protein (StAR) level. Furthermore, the effects of SC on malondialdehyde (MDA) level, reactive oxygen species (ROS)/reactive nitrogen species (RNS) level, apoptotic index, serum luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels, Glucose-regulated protein-78 (Grp 78), phosphorylated c-Jun-N-terminal kinase (p-JNK), phosphorylated inositol-requiring transmembrane kinase/endoribonuclease 1α (p-IRE1α), cleaved caspase 3, and Bax:Bcl2 in VC-induced rats were significantly decreased. Treatment with SC extracts also increased sperm motility in human sperm. Our findings suggest that the SC ameliorate testicular dysfunction in VC-induced rats via crosstalk between oxidative stress, ER stress, and mitochondrial-mediated testicular germ cell apoptosis signaling pathways. SC promotes spermatogenesis by upregulating abnormal sex hormones and decreasing proinflammatory cytokines (interleukin-6; TNF-α).
Collapse
Affiliation(s)
- Keshab Kumar Karna
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School-Biomedical Research Institute and Clinical Trial Center of Medical Device, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Bo Ram Choi
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea;
| | - Min-Ji Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
| | - Hye Kyung Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
- Correspondence: (H.K.K.); (J.K.P.); Tel.: +82-51-663-4883 (H.K.K.); +82-63-250-1510 (J.K.P.); Fax: +82-51-663-4809 (H.K.K.); +82-63-250-1564 (J.K.P.)
| | - Jong Kwan Park
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School-Biomedical Research Institute and Clinical Trial Center of Medical Device, Chonbuk National University Hospital, Jeonju 54907, Korea;
- Correspondence: (H.K.K.); (J.K.P.); Tel.: +82-51-663-4883 (H.K.K.); +82-63-250-1510 (J.K.P.); Fax: +82-51-663-4809 (H.K.K.); +82-63-250-1564 (J.K.P.)
| |
Collapse
|
24
|
Wijerathne TD, Kim JH, Kim MJ, Kim CY, Chae MR, Lee SW, Lee KP. Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:381-392. [PMID: 31496875 PMCID: PMC6717788 DOI: 10.4196/kjpp.2019.23.5.381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022]
Abstract
Sperm function and male fertility are closely related to pH dependent K+ current (KSper) in human sperm, which is most likely composed of Slo3 and its auxiliary subunit leucine-rich repeat-containing protein 52 (LRRC52). Onion peel extract (OPE) and its major active ingredient quercetin are widely used as fertility enhancers; however, the effect of OPE and quercetin on Slo3 has not been elucidated. The purpose of this study is to investigate the effect of quercetin on human Slo3 channels. Human Slo3 and LRRC52 were co-transfected into HEK293 cells and pharmacological properties were studied with the whole cell patch clamp technique. We successfully expressed and measured pH sensitive and calcium insensitive Slo3 currents in HEK293 cells. We found that OPE and its key ingredient quercetin inhibit Slo3 currents. Inhibition by quercetin is dose dependent and this degree of inhibition decreases with elevating internal alkalization and internal free calcium concentrations. Functional moieties in the quercetin polyphenolic ring govern the degree of inhibition of Slo3 by quercetin, and the composition of such functional moieties are sensitive to the pH of the medium. These results suggest that quercetin inhibits Slo3 in a pH and calcium dependent manner. Therefore, we surmise that quercetin induced depolarization in spermatozoa may enhance the voltage gated proton channel (Hv1), and activate non-selective cation channels of sperm (CatSper) dependent calcium influx to trigger sperm capacitation and acrosome reaction.
Collapse
Affiliation(s)
- Tharaka Darshana Wijerathne
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Ji Hyun Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Min Ji Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Korea
| | - Mee Ree Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|