1
|
Ding K, Jiang W, Wuke S, Lei M. Causal benefits of 25 dietary intakes on epigenetic ageing: a Mendelian randomisation study. Int J Food Sci Nutr 2024; 75:582-596. [PMID: 39021046 DOI: 10.1080/09637486.2024.2379817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
DNA methylation GrimAge acceleration (DMGA) and intrinsic epigenetic age acceleration (IEAA) are important physiological markers for assessing the ageing process. Evidence from cross-sectional studies suggests that some dietary intake is associated with DMGA and IEAA. However, the causal relationship between them has yet to be elucidated. This Mendelian randomisation study uses genetic variants associated with different dietary intakes as instrumental variables to explore the causal benefits of multiple dietary intakes on DMGA and IEAA. Cheese intake, dark chocolate intake, average weekly red wine intake, dried fruit intake, fresh fruit intake, porridge intake, cereal intake, and liver intake had a negative causal association with DMGA, and poultry intake and doughnut intake had a positive causal association with DMGA (p < 0.05). Muesli and bran cereal intake had a negative causal association with IEAA, and pineapple intake had a positive causal association with IEAA (p < 0.05). Dietary intake positively causally associated with IEAA or DMGA may have accelerated biological ageing; conversely, dietary intake negatively causally associated with IEAA or DMGA may have contributed to delaying biological ageing. Based on genetic evidence, this study demonstrated some significant causal benefits of dietary intake on DMGA and IEAA, suggesting the possibility of intervening in DNA methylation acceleration and epigenetic age acceleration by adjusting these food intakes, thereby promoting health and delaying ageing. However, the findings of this study are exploratory and preliminary and need to be supported and validated by evidence from further clinical studies and mechanistic studies.
Collapse
Affiliation(s)
- Kaixi Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shangjing Wuke
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Lei
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
García-García I, Grisotto G, Heini A, Gibertoni S, Nusslé S, Gonseth Nusslé S, Donica O. Examining nutrition strategies to influence DNA methylation and epigenetic clocks: a systematic review of clinical trials. FRONTIERS IN AGING 2024; 5:1417625. [PMID: 39077104 PMCID: PMC11284312 DOI: 10.3389/fragi.2024.1417625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024]
Abstract
Nutrition has powerful impacts on our health and longevity. One of the mechanisms by which nutrition might influence our health is by inducing epigenetic modifications, modulating the molecular mechanisms that regulate aging. Observational studies have provided evidence of a relationship between nutrition and differences in DNA methylation. However, these studies are limited in that they might not provide an accurate control of the interactions between different nutrients, or between nutrition and other lifestyle behaviors. Here we systematically reviewed clinical studies examining the impact of nutrition strategies on DNA methylation. We examined clinical studies in community-dwelling adults testing the effects of nutrition interventions on i) global DNA methylation and its proxies, and ii) epigenetic clocks. We included 21 intervention studies that focused on the effects of healthy nutrition patterns, specific foods or nutrients, as well as the effect of multivitamin or multimineral supplements. In four studies on the methylation effects of healthy dietary patterns, as defined by being rich in vegetables, fruits, whole-grains, and nuts and reduced in the intake of added sugars, saturated fat, and alcohol, two of them suggested that a healthy diet, is associated with lower epigenetic age acceleration, one of them reported increases in global DNA methylation, while another one found no diet effects. Studies examining epigenetic effects of specific foods, nutrients, or mixtures of nutrients were scarce. For both folic acid and polyunsaturated fatty acids, the available independent studies produced conflicting findings. Although more evidence is still needed to draw firm conclusions, results begin to suggest that healthy dietary patterns have positive effects on DNA methylation. Additional evidence from large randomized-controlled clinical trials is needed to support the effects of healthy nutrition on the DNA methylome.
Collapse
Affiliation(s)
| | | | - Adrian Heini
- Clinique la Prairie, Clarens-Montreux, Vaud, Switzerland
| | | | | | | | - Olga Donica
- Clinique la Prairie, Clarens-Montreux, Vaud, Switzerland
| |
Collapse
|
3
|
Al-Madhagi H, Tarabishi AA. Nutritional aphrodisiacs: Biochemistry and Pharmacology. Curr Res Food Sci 2024; 9:100783. [PMID: 38974844 PMCID: PMC11225857 DOI: 10.1016/j.crfs.2024.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
In 2022, the global prevalence of erectile dysfunction (ED) was estimated to be at least 150 million cases. This number is greatly suspected to be underestimate as most men withhold information about ED. Also, about 15% of world population have infertility troubles, and male factors are responsible for almost half of these cases. Studies have shown that the quality of semen has decreased in the past several decades owing to various health factors and environmental toxicants. The current medical interventions involve the inhibition of phosphodiesterase 5 which suffer from serious side effects and costly. One of the popular and most sought interventions are the natural and nutritional remedies as they are foods in essence and potentially with no harm to the body. Therefore, the goal of this paper is to provide a review of the most common nutritional aphrodisiacs with increasing libido and fertility highlighting the potential active constituents as well as the underlying mechanisms.
Collapse
|
4
|
Stirland I, Soares MR, Furtado CLM, Dos Reis RM, Aston KI, Smith RP, Jenkins TG. An assessment of alterations to human sperm methylation patterns in coronavirus disease 2019 infected and healthy control males. F&S SCIENCE 2024; 5:2-15. [PMID: 38070681 DOI: 10.1016/j.xfss.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To determine whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects male reproductive health, considering the many potential factors that contribute to declines in male fertility on a semiglobal scale. DESIGN In total, 64 human semen samples-32 treatment and 32 control-were laboratory processed and bioinformatically analyzed to assess differences in DNA methylation patterns. Implementing multiple bioinformatic tools, the analyses conducted will elicit between-group differences with respect to epigenetic age, epigenetic instability, semiglobal, and regional methylation, in addition to methylation patterns as a function of time since infection. SETTING University hospital. PATIENTS The study cohort of 64 individuals was drawn from a larger population of 94 volunteer participants recruited at the Human Reproduction Center at the Clinical Hospital of the Ribeirao Preto Medical School-University of São Paulo between June 2021 and January 2022 as well as in accordance with the ethical guidelines established by the Declaration of Helsinki. INTERVENTION Exposure to SARS-CoV-2. MAIN OUTCOME MEASURE(S) Effects on male reproductive health were reported as differences in DNA methylation measured using an array. Mean β values at key regulatory loci for human spermatocytes were analyzed and compared between groups. Further analysis of β values using epigenetic age, instability, semiglobal, and regional methylation tools provided an analysis with substantial breadth and depth. RESULTS In all analyses, there were no differences between groups. Considering these results, it can be inferred that infection with SARS-CoV-2 does not alter the epigenome of human spermatocytes in significant and/or persistent ways. Tangentially, these data also suggest that human male reproductive health is minimally altered by the virus, or that it is altered in a way that is independent of epigenetic programming. CONCLUSION Infection with SARS-CoV-2 has been reportedly associated with alterations in male fertility. This study asserts that such alterations do not have an epigenetic basis but are likely a result of concomitant symptomatology, i.e., fever and inflammation. Across the multiple bioinformatic analyses conducted, the results of this test did not detect any differences in DNA methylation patterns between coronavirus disease 2019 and noncoronavirus disease semen donor groups.
Collapse
Affiliation(s)
- Isaac Stirland
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah
| | - Murilo Racy Soares
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Cristiana Libardi Miranda Furtado
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil; University of Fortaleza, Experimental Biology Center, Fortaleza, Ceara, Brazil
| | - Rosana Maria Dos Reis
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Kenneth I Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - R Parker Smith
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah
| | - Timothy G Jenkins
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah; Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
5
|
Pecora G, Sciarra F, Gangitano E, Venneri MA. How Food Choices Impact on Male Fertility. Curr Nutr Rep 2023; 12:864-876. [PMID: 37861951 PMCID: PMC10766669 DOI: 10.1007/s13668-023-00503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting an association between nutrition and male fertility. Here, we have highlighted the impact of the various food groups on reproductive hormones and on spermatogenesis, and the effects of classical and latest dietary patterns such as Mediterranean diet, Western diet, intermittent fasting, ketogenic diet, and vegan/vegetarian diet on male fertility. RECENT FINDINGS Nutrients are the precursors of molecules involved in various body's reactions; therefore, their balance is essential to ensure the correct regulation of different systems including the endocrine system. Hormones are strongly influenced by the nutritional status of the individual, and their alteration can lead to dysfunctions or diseases like infertility. In addition, nutrients affect sperm production and spermatogenesis, controlling sexual development, and maintaining secondary sexual characteristics and behaviors. The consumption of fruit, vegetables, fish, processed meats, dairy products, sugars, alcohol, and caffeine importantly impact on male fertility. Among dietary patterns, the Mediterranean diet and the Western diet are most strongly associated with the quality of semen. Nutrients, dietary patterns, and hormonal levels have an impact on male infertility. Therefore, understanding how these factors interact with each other is important for strategies to improve male fertility.
Collapse
Affiliation(s)
- Giulia Pecora
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy.
| |
Collapse
|
6
|
Gallagher MT, Krasauskaite I, Kirkman-Brown JC. Only the Best of the Bunch-Sperm Preparation Is Not Just about Numbers. Semin Reprod Med 2023; 41:273-278. [PMID: 38113923 DOI: 10.1055/s-0043-1777756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this Seminar, we present an overview of the current and emerging methods and technologies for optimizing the man and the sperm sample for fertility treatment. We argue that sperms are the secret to success, and that there are many avenues for improving both treatment and basic understanding of their role in outcomes. These outcomes encompass not just whether treatment is successful or not, but the wider intergenerational health of the offspring. We discuss outstanding challenges and opportunities of new technologies such as microfluidics and artificial intelligence, including potential pitfalls and advantages. This article aims to provide a comprehensive overview of the importance of sperm in fertility treatment and suggests future directions for research and innovation.
Collapse
Affiliation(s)
- Meurig T Gallagher
- Centre for Human Reproductive Science, Institute of Metabolism and Systems Research, University of Birmingham and Birmingham Women's Fertility Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TT, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Ingrida Krasauskaite
- Centre for Human Reproductive Science, Institute of Metabolism and Systems Research, University of Birmingham and Birmingham Women's Fertility Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TT, United Kingdom
| | - Jackson C Kirkman-Brown
- Centre for Human Reproductive Science, Institute of Metabolism and Systems Research, University of Birmingham and Birmingham Women's Fertility Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
7
|
Garrido N, Boitrelle F, Saleh R, Durairajanayagam D, Colpi G, Agarwal A. Sperm epigenetics landscape: correlation with embryo quality, reproductive outcomes and offspring's health. Panminerva Med 2023; 65:166-178. [PMID: 37335245 DOI: 10.23736/s0031-0808.23.04871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Epigenetics refers to how gene expression and function are modulated without modifying the DNA sequence but through subtle molecular changes or interactions with it. As spermatogenesis progresses, male germ cells suffer plenty of epigenetic modifications, resulting in the definitive epigenome of spermatozoa conditioning its functionality, and this process can be altered by several internal and external factors. The paternal epigenome is crucial for sperm function, fertilization, embryo development, and offspring's health, and altered epigenetic states are associated with male infertility with or without altered semen parameters, embryo quality impairment, and worse ART outcomes together with the future offspring's health risks mainly through intergenerational transmission of epigenetic marks. Identifying epigenetic biomarkers may improve male factor diagnosis and the development of targeted therapies, not only to improve fertility but also to allow an early detection of risk and disease prevention in the progeny. While still there is much research to be done, hopefully in the near future, improvements in high-throughput technologies applied to epigenomes will permit our understanding of the underlying epigenetic mechanisms and the development of diagnostics and therapies leading to improved reproductive outcomes. In this review, we discuss the mechanisms of epigenetics in sperm and how epigenetics behave during spermatogenesis. Additionally, we elaborate on the relationship of sperm epigenetics with sperm parameters and male infertility, and highlight the impact of sperm epigenetic alterations on sperm parameters, embryo quality, ART outcomes, miscarriage rates and offspring's health. Furthermore, we provide insights into the future research of epigenetic alterations in male infertility.
Collapse
Affiliation(s)
- Nicolás Garrido
- Global Andrology Forum, Moreland Hills, OH, USA
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Florence Boitrelle
- Global Andrology Forum, Moreland Hills, OH, USA
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Ramadan Saleh
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Damayanthi Durairajanayagam
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Giovanni Colpi
- Global Andrology Forum, Moreland Hills, OH, USA
- Next Fertility Procrea, Lugano, Switzerland
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA -
- American Center for Reproductive Medicine, Cleveland, OH, USA
| |
Collapse
|
8
|
Novel Lines of Research on the Environmental and Human Health Impacts of Nut Consumption. Nutrients 2023; 15:nu15040955. [PMID: 36839312 PMCID: PMC9964796 DOI: 10.3390/nu15040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Nuts have formed part of human diets throughout the ages. In recent decades, research has shown they are key foods in dietary patterns associated with lower chronic disease risk. The current state of climate change, however, has introduced an imperative to review the impact of dietary patterns on the environment with a shift to plant-based diets. Nuts emerge as a significant source of protein in plant-based diets and are a minimally processed and sustainable food. Research in this area is evolving to drive better production methods in varying climate conditions. Nevertheless, nut consumption remains an important contributor to human health. The mechanisms of action can be explained in terms of the nutrients they deliver. Studies of nut consumption have linked components such as monounsaturated fatty acids, plant omega-3 fatty acids, antioxidants, and plant sterols to improved lipoprotein profiles, lower blood pressure, and reduced cardiovascular disease risk. Preliminary research also indicates possible beneficial effects of nut consumption on reproductive health. In any case, the ultimate effects of foods on health are the results of multiple interactive factors, so where nuts fit within dietary patterns is a significant consideration for research translation. This has implications for research methodologies, including categorization within food groups and inclusion in Healthy Dietary Indices. The aim of this narrative review is to outline new focal points for investigation that examine the environmental and some novel human health impacts of nut consumption and discuss future directions for research.
Collapse
|
9
|
Johnson AA, English BW, Shokhirev MN, Sinclair DA, Cuellar TL. Human age reversal: Fact or fiction? Aging Cell 2022; 21:e13664. [PMID: 35778957 PMCID: PMC9381899 DOI: 10.1111/acel.13664] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
Although chronological age correlates with various age-related diseases and conditions, it does not adequately reflect an individual's functional capacity, well-being, or mortality risk. In contrast, biological age provides information about overall health and indicates how rapidly or slowly a person is aging. Estimates of biological age are thought to be provided by aging clocks, which are computational models (e.g., elastic net) that use a set of inputs (e.g., DNA methylation sites) to make a prediction. In the past decade, aging clock studies have shown that several age-related diseases, social variables, and mental health conditions associate with an increase in predicted biological age relative to chronological age. This phenomenon of age acceleration is linked to a higher risk of premature mortality. More recent research has demonstrated that predicted biological age is sensitive to specific interventions. Human trials have reported that caloric restriction, a plant-based diet, lifestyle changes involving exercise, a drug regime including metformin, and vitamin D3 supplementation are all capable of slowing down or reversing an aging clock. Non-interventional studies have connected high-quality sleep, physical activity, a healthy diet, and other factors to age deceleration. Specific molecules have been associated with the reduction or reversal of predicted biological age, such as the antihypertensive drug doxazosin or the metabolite alpha-ketoglutarate. Although rigorous clinical trials are needed to validate these initial findings, existing data suggest that aging clocks are malleable in humans. Additional research is warranted to better understand these computational models and the clinical significance of lowering or reversing their outputs.
Collapse
Affiliation(s)
- Adiv A. Johnson
- Longevity Sciences, Inc. (dba Tally Health)GreenwichConnecticutUSA
| | - Bradley W. English
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging ResearchHarvard Medical SchoolBostonMassachusettsUSA
| | | | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging ResearchHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
10
|
Rimmer MP, Howie RA, Subramanian V, Anderson RA, Bertolla RP, Beebeejaun Y, Bortoletto P, Sunkara SK, Mitchell RT, Pacey A, van Wely M, Farquhar CM, Duffy JMN, Niederberger C. Outcome reporting across randomized controlled trials evaluating potential treatments for male infertility: a systematic review. Hum Reprod Open 2022; 2022:hoac010. [PMID: 35386119 PMCID: PMC8982407 DOI: 10.1093/hropen/hoac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION What are the primary outcomes and outcome measures used in randomized controlled trials (RCTs) evaluating potential treatments for male infertility in the last 10 years? SUMMARY ANSWER Outcome reporting across male infertility trials is heterogeneous with numerous definitions and measures used to define similar outcomes. WHAT IS KNOWN ALREADY No core outcome set for male infertility trials has been developed. Male infertility trials are unique in that they have potentially three participants, a man, a female partner and their offspring and this will likely lead to significant variation in outcome reporting in randomized trials. STUDY DESIGN SIZE DURATION A systematic review of RCTs mapping outcomes and outcome measures evaluating potential treatments for men with infertility registered in the Cochrane Register of Controlled Trials (CENTRAL) between January 2010 and July 2021. PARTICIPANTS/MATERIALS SETTING METHODS Abstract screening and study selection was undertaken in duplicate using a review protocol that was developed prior to commencing the review. No risk of bias assessment was undertaken as this review aims to report on outcome reporting only. MAIN RESULTS AND THE ROLE OF CHANCE One hundred and seventy-five RCTs were identified, and given the large number of studies we limited our review to the 100 largest trials. Seventy-nine different treatments were reported across the 100 largest RCTs including vitamin and dietary supplements (18 trials), surgical treatments (18 trials) and sperm selection techniques (22 trials). When considering the largest 100 trials (range: 80-2772 participants), 36 primary and 89 secondary outcomes were reported. Forty-seven trials reported a primary outcome and 36 trials clearly defined their primary outcome. Pregnancy outcomes were inconsistently reported and included pregnancy rate (51 trials), pregnancy loss including miscarriage, ectopic pregnancy, stillbirth (9 trials) and live birth (13 trials). Trials consistently reporting the same outcome frequently used different definitions. For example, semen quality was reported by 75 trials and was defined in 7 different ways, including; the World Health Organization (WHO) 2010 criteria (32 trials), WHO 1999 criteria (18 trials), WHO 1992 criteria (3 trials), WHO 1999 and 1992 criteria (1 trial) and the Kruger strict morphology criteria (1 trial). LIMITATIONS REASONS FOR CAUTION We only evaluated the 100 largest trials published in the last 10 years and did not report outcomes on the remaining 75. An outcome was included as a primary outcome only if clearly stated in the manuscript and we did not contact authors to clarify this. As our review mapped outcomes and outcome measures, we did not undertake an integrity assessment of the trials included in our review. WIDER IMPLICATIONS OF THE FINDINGS Most randomized trials evaluating treatments for male infertility report different outcomes. Only half of the RCTs reported pregnancy rate and even fewer reported live birth; furthermore, the definitions of these outcomes varies across trials. Developing, disseminating and implementing a minimum data set, known as a core outcome set, for male infertility research could help to improve outcome selection, collection and reporting. STUDY FUNDING/COMPETING INTERESTS A.P.-chairman of external scientific advisory committee of Cryos International Denmark ApS, member of the scientific advisory board for Cytoswim LDT and ExSeed Health. Guest lecture at the 'Insights for Fertility Conference', funded by MERK SERONO Limited. M.v.W.-holds a ZON-MW research grant. No external funding was obtained for this study.
Collapse
Affiliation(s)
| | | | - Venkatesh Subramanian
- King’s Fertility, The Fetal Medicine Research Unit, King’s College London, London, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical research Institute, University of Edinburgh, Edinburgh, UK,Edinburgh Fertility Centre, Simpsons Centre for Reproductive Health, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Ricardo Pimenta Bertolla
- Division of Urology, Department of Surgery, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Yusuf Beebeejaun
- King’s Fertility, The Fetal Medicine Research Unit, King’s College London, London, UK
| | - Pietro Bortoletto
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sesh K Sunkara
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical research Institute, University of Edinburgh, Edinburgh, UK
| | - Allan Pacey
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Madelon van Wely
- Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Cindy M Farquhar
- Cochrane Gynaecology and Fertility Group, Auckland, New Zealand,Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - James M N Duffy
- Correspondence address. King’s Fertility, The Fetal Medicine Research Unit, King’s College London, London, UK. Tel: +44-7949-066806; E-mail:
| | - Craig Niederberger
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA,Department of Bioengineering, University of Illinois at Chicago College of Engineering, Chicago, IL, USA
| |
Collapse
|
11
|
Schrott R, Murphy SK, Modliszewski JL, King DE, Hill B, Itchon-Ramos N, Raburn D, Price T, Levin ED, Vandrey R, Corcoran DL, Kollins SH, Mitchell JT. Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab009. [PMID: 34557312 PMCID: PMC8455898 DOI: 10.1093/eep/dvab009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 05/20/2023]
Abstract
Cannabis use alters sperm DNA methylation, but the potential reversibility of these changes is unknown. Semen samples from cannabis users and non-user controls were collected at baseline and again following a 77-day period of cannabis abstinence (one spermatogenic cycle). Users and controls did not significantly differ by demographics or semen analyses. Whole-genome bisulfite sequencing identified 163 CpG sites with significantly different DNA methylation in sperm between groups (P < 2.94 × 10-9). Genes associated with altered CpG sites were enriched with those involved in development, including cardiogenesis and neurodevelopment. Many of the differences in sperm DNA methylation between groups were diminished after cannabis abstinence. These results indicate that sustained cannabis abstinence significantly reduces the number of sperm showing cannabis-associated alterations at genes important for early development.
Collapse
Affiliation(s)
- Rose Schrott
- Duke University Program in Environmental Health, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC, USA
| | - Susan K Murphy
- Duke University Program in Environmental Health, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC, USA
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, 701 W. Main Street, Durham, NC, USA
| | - Jennifer L Modliszewski
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, 101 Science Drive, Durham, NC, USA
| | - Dillon E King
- Duke University Program in Environmental Health, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC, USA
| | - Bendu Hill
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - Nilda Itchon-Ramos
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - Douglas Raburn
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University Medical Center, 5704 Fayetteville Road, Durham, NC, USA
| | - Thomas Price
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University Medical Center, 5704 Fayetteville Road, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - Ryan Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, 101 Science Drive, Durham, NC, USA
| | - Scott H Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| | - John T Mitchell
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road, Durham, NC, USA
| |
Collapse
|
12
|
Mitsunami M, Salas-Huetos A, Mínguez-Alarcón L, Attaman JA, Ford JB, Kathrins M, Souter I, Chavarro JE. Men's dietary patterns in relation to infertility treatment outcomes among couples undergoing in vitro fertilization. J Assist Reprod Genet 2021; 38:2307-2318. [PMID: 34173913 PMCID: PMC8490600 DOI: 10.1007/s10815-021-02251-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE(S) To evaluate the relationship of men's dietary patterns with outcomes of in vitro fertilization (IVF). METHODS This is a prospective cohort study including 231 couples with 407 IVF cycles, presented at an academic fertility center from April 2007 to April 2018. We assessed diet with a validated food frequency questionnaire and identified Dietary Pattern 1 and Dietary Pattern 2 using principal component analysis. We evaluated adjusted probability of IVF outcomes across the quartiles of the adherence to two dietary patterns by generalized linear mixed models. RESULTS Men had a median age of 36.8 years and BMI of 26.9 kg/m2. Women's median age and BMI were 35.0 years and 23.1 kg/m2, respectively. Adherence to Dietary Pattern 1 (rPearson=0.44) and Dietary Pattern 2 (rPearson=0.54) was positively correlated within couples. Adherence to Dietary Pattern 1 was positively associated with sperm concentration. A 1-unit increase in this pattern was associated with a 13.33 (0.71-25.96) million/mL higher sperm concentration. However, neither Dietary Pattern 1 nor Dietary Pattern 2 was associated with fertilization, implantation, clinical pregnancy, or live birth probabilities. CONCLUSIONS Data-derived dietary patterns were associated with semen quality but unrelated to the probability of successful IVF outcomes.
Collapse
Affiliation(s)
| | - Albert Salas-Huetos
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Jill A Attaman
- Fertility Center, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Martin Kathrins
- Division of Urology, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Irene Souter
- Fertility Center, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA.
| |
Collapse
|