1
|
Wu X, Zhao H, Huang X, Lu P, Zhang R, Guan Q, Yu C. The role and mechanism of quercetin in improving late-onset hypogonadism through network analysis and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04022-0. [PMID: 40090989 DOI: 10.1007/s00210-025-04022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
The rising incidence of late-onset hypogonadism (LOH) profoundly diminishes the quality of life in men due to declining testosterone levels. Quercetin is an important active metabolite in various traditional botanical drugs that enhance male fertility, yet its mechanisms of action remain unclear. This study delves into the therapeutic potential and underlying mechanisms of quercetin in LOH management, proposing novel treatment strategies. An aging murine model was created and treated with quercetin starting at 12 weeks of age. Sperm parameters were evaluated, and serum and testicular testosterone and inflammatory cytokines were quantified via ELISA. Histological analyses of testicular tissue were performed. Network analysis and molecular docking studies predicted quercetin's therapeutic pathways in LOH. Key proteins involved in testosterone synthesis and testicular aging were verified using western blotting and immunofluorescence. Aged TM3 cells were treated with quercetin to corroborate the effects on testicular Leydig cells. In the murine model, the quercetin treatment group showed an increase in sperm average path velocity (VAP) by 1.21 ± 0.087-fold (p < 0.01), an increase in straight-line velocity (VCL) by 1.12 ± 0.18-fold (p < 0.01), a rise in serum testosterone levels by 0.27 ± 0.48-fold (p < 0.05), and an increase in testosterone levels in testicular tissue by 0.30 ± 0.20-fold (p < 0.05), while IL-1β levels decreased to 0.61 ± 0.13-fold (p < 0.01) compared to the aging group. Network analysis suggested quercetin's efficacy in LOH may be mediated through the AR and PI3K/AKT pathways. In quercetin-treated aged mice, a reduction in γH2AX and an increase in Ki67 expression were observed in testicular tissue, alongside upregulated expression of key testosterone synthesis proteins-steroidogenic acute regulatory (STAR) and scavenger receptor class B type 1 (SRB1), accompanied with enhanced AR expression and AKT1 phosphorylation. Similar results were confirmed in testicular Leydig cells. Compared to the group treated with bleomycin alone, the bleomycin plus quercetin treatment group showed a reduced positive area in β-gal staining, downregulation of the senescence-associated marker γH2AX, increased expression of the key testosterone synthesis protein SRB1, and elevated levels of expression of quercetin's potential target AR as well as phosphorylation of AKT1. Quercetin ameliorates the aging of testicular Leydig cells and promotes testosterone synthesis through modulation of the AR/PI3K/AKT signaling pathway, presenting a promising therapeutic approach for LOH.
Collapse
Affiliation(s)
- Xiaodong Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Xinshuang Huang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Peng Lu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrinology and Metabolic Diseases, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Runqi Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrinology and Metabolic Diseases, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrinology and Metabolic Diseases, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
| | - Chunxiao Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrinology and Metabolic Diseases, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, No. 324, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Jiang X, Xu W, Sun J, Lin J, Lin Z, Lian X, Liao S, Luo S, Liu Y, Wang S. Trps1 regulates mouse zygotic genome activation and preimplantation embryo development via the PDE4D/AKT/CREB signaling pathway. Cell Biol Toxicol 2025; 41:48. [PMID: 39979480 PMCID: PMC11842480 DOI: 10.1007/s10565-025-09999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Despite zygotic genome activation (ZGA) is crucial for early embryonic development, its regulatory mechanism is still unclear in mammals. In the present study, we demonstrate that TRPS1, a maternal factor, plays an essential role in mouse early embryogenesis by regulating the transition from 2-cell to 4-cell embryos during preimplantation development. The absence of Trps1 could leads to impaired ZGA through AKT/CREB signaling pathway. Furthermore, our findings suggest that TRPS1 may modulate the transcription of Pde4d to influence AKT and CREB phosphorylation. Interestingly, compared to Trps1 knockdown alone, co-injection of Trps1 siRNA and Pde4d mRNA significantly enhances the development rate of 4-cell embryos. Collectively, these results indicate a negative involvement of Trps1 in mouse preimplantation embryo development by targeting the PDE4D/AKT/CREB pathway to regulate ZGA.
Collapse
Affiliation(s)
- Xia Jiang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Weiwei Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Jiandong Sun
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Reproductive Medicine Centre, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Jianmin Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Zihang Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Xiuli Lian
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shumin Liao
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shanshan Luo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
3
|
He X, Huang H, Liu Y, Li H, Ren H. Analysis of the function, mechanism and clinical application prospect of TRPS1, a new marker for breast cancer. Gene 2025; 932:148880. [PMID: 39181273 DOI: 10.1016/j.gene.2024.148880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.
Collapse
Affiliation(s)
- Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Huifen Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huayan Ren
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Wang D, Liu X, Chen B, Shang Y, Wan T, Zhang S, Liu H, Shi Y, Chen X, Sun H. Down-regulation of miR-138-5p in PP2A KO mice promoted apoptosis of spermatocytes. Mol Biol Rep 2024; 51:1147. [PMID: 39535579 DOI: 10.1007/s11033-024-10096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Protein phosphatase 2 A (PP2A) is known to have a pivotal and diverse functions in various physiological processes. In the previous study, we utilized the cre-loxp system to generate germ cell-specific knockout mice for the PP2A catalytic subunit alpha subunit (Ppp2cacKO). METHODS AND RESULTS Using high-throughput miRNA sequencing of testis tissues and real‑time PCR, we have identified a notable decrease in the expression of miR-138-5p in the testes of Ppp2cacKO mice. Our findings indicate that miR-138-5p plays a role in the regulation of apoptosis and proliferation of GC2 cells. Furthermore, bioinformatics analyses suggested that miR-138- 5p may target the transcriptional repressor Trps1. Consistent with these predictions, we observed a significant upregulation of Trps1 in the testes of Ppp2cacKO mice. Through transfection experiments, we have validated the negative regulation of Trps1 expression by miR-138-5p in GC2 cells. CONCLUSION Our study indicates that the down-regulation of miR-138-5p in PP2A KO mice, which targets Trps1 to promote spermatocyte apoptosis.
Collapse
Affiliation(s)
- Danni Wang
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Xing Liu
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Bingyan Chen
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Yuwei Shang
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Ting Wan
- Changzhou Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, 213003, China
| | - Shu Zhang
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Huijun Liu
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Yichao Shi
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Xia Chen
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China
| | - Huiting Sun
- Center of Reproduction, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University,Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Jiangsu, Changzhou, 213003, China.
| |
Collapse
|
5
|
Wang X, Sun J, Liu Y, Lin Z, Jiang X, Ye Y, Lv C, Lian X, Xu W, Luo S, Liao S, Chen Z, Wang S. Trps1 predicts poor prognosis in advanced high grade serous ovarian carcinoma. Int J Cancer 2024; 154:1639-1651. [PMID: 38212905 DOI: 10.1002/ijc.34844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
TRPS1 is aberrantly expressed in a variety of tumors, including breast, prostate, and gastric cancers, and is strongly associated with tumorigenesis or prognosis. However, the role of TRPS1 in high grade serous ovarian carcinoma (HGSC) is unknown. We investigated the relationship between TRPS1 expression and clinicopathology in HGSC patients. The tumor-related regulatory mechanisms of TRPS1 was explored through in vivo and vitro experiments. The results showed that TRPS1 was highly expressed in HGSC compared to normal tissues. It was also linked to the cell proliferation index Ki67 and poor prognosis. In vivo experiments showed that knockdown of TRPS1 could inhibit tumor growth. In vitro experiments, knockdown of TRPS1 inhibited the proliferation of ovarian cancer cells. TRPS1 exerted its regulatory role as a transcription factor, binding to the PSAT1 promoter and promoting the expression of PSAT1 gene. Meanwhile, PSAT1 was positively correlated with CCND1 expression. These results suggest that TRPS1 affects HGSC proliferation and cell cycle by regulating PSAT1 and thus CCND1 expression.
Collapse
Affiliation(s)
- Xiaojiang Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Molecular Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiandong Sun
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zihang Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xia Jiang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuhong Ye
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chengyu Lv
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiuli Lian
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiwei Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shanshan Luo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shumin Liao
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhangting Chen
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Sun J, Lian X, Lv C, Li H, Lin Z, Luo S, Liu Y, Xu Y, Jiang X, Xu W, Liao S, Chen Z, Wang S. Trps1 acts as a regulator of Sf-1 transcription and testosterone synthesis in mouse Leydig cells. Cell Biol Toxicol 2023; 39:3141-3157. [PMID: 37531013 DOI: 10.1007/s10565-023-09823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Infertility has attracted global concern, and disruption of testosterone is a common cause of male infertility. Exploring the critical factors in testosterone biosynthesis may provide new insights for disease research and clinical therapy. Research on trichorhinophalangeal syndrome-1 (Trps1) gene has recently been focus on cancers; it is yet unknown whether Trps1 produces a marked effect in the male reproductive system. In the current study, single-cell RNA sequencing analysis of trichorhinophalangeal syndrome-1 gene (Trps1) expression in mouse testes and cleavage under targets and tagmentation and RNA sequencing were utilized to investigate the functionality of Trps1 in mouse Leydig cells. Knockdown of Trps1 increased testosterone synthesis in vitro and vivo using adeno-associated viral delivery and conditional knockout models. The results showed that Trps1 was abundantly expressed in Leydig cells. The expression levels of both steroidogenic factor-1 (Sf-1) and steroidogenic enzymes (Cyp11a1, Hsd3b, Cyp17a1, and Hsd17b3) as well as testosterone secretion were increased after Trps1 deficiency in vivo and vitro. Furthermore, disruption of Trps1 reduced histone deacetylase 1/2 activity and increased histone H3 acetylation in the Sf-1 promoter, thereby promoting testosterone secretion. Interestingly, Sf-1 also regulated the transcription of Trps1 through activating transcription factor 2. These results indicate that Trps1 targets Sf-1 to affect steroidogenesis through histone acetylation and shed light on the critical role of Trps1 functioning in the mouse Leydig cells.
Collapse
Affiliation(s)
- Jiandong Sun
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Xiuli Lian
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Chengyu Lv
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Hua Li
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Zihang Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shanshan Luo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Yinglin Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Xia Jiang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Weiwei Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shumin Liao
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Zhangting Chen
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
7
|
Ma H, Zhang H, Yu J, Wang Z, Zeng X, Ye J, Wang C. Integrated analysis of microRNA expression profiles and function network in mice testes after low dose lead exposure from early puberty. Toxicol Appl Pharmacol 2022; 454:116260. [PMID: 36183778 DOI: 10.1016/j.taap.2022.116260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
Abstract
There is evidence suggesting the participation of non-coding RNAs in male reproductive dysfunction induced by lead, and the significance of microRNAs has been highlighted recently because of their essential roles in gene regulatory networks. To comprehensively understand the functions of miRNA and the regulatory networks, RNA sequencing was carried out to obtain miRNA expression profiles in mice testes exposed to low dose Pb for 90 days at the onset of puberty. In total, 44 differentially expressed miRNAs with 26 up-regulated and 18 down-regulated were identified between 200 mg/L Pb group and control group (p < 0.05). Enrichment analysis confirmed that the target genes of DE miRNAs might participate in the metabolism of testicular cells. Furthermore, a miRNA-mRNA co-expression network consisting of 19 miRNAs and 106 mRNAs and a competing endogenous RNA network of lncRNA-miRNA-mRNA including 179 genes were established. Finally, the expressions of 4 miRNAs (mmu-miR-451a, mmu-miR-133a-3p, mmu-miR-1a-3p and mmu-miR-486a-3p) and 4 mRNAs (Gramd1b, Tcf7l2, Mov10 and Srcin1) involved in regulatory networks were verified by RT-qPCR. In conclusion, our research might provide targets for the mechanism studies of miRNAs in reproductive toxicity of Pb.
Collapse
Affiliation(s)
- Haitao Ma
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Haoran Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jun Yu
- Department of Preventive Medicine, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Ziqiong Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiangchao Zeng
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jingping Ye
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, Hubei Province, China.
| | - Chunhong Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, Hubei Province, China.
| |
Collapse
|
8
|
Functional mechanisms of TRPS1 in disease progression and its potential role in personalized medicine. Pathol Res Pract 2022; 237:154022. [PMID: 35863130 DOI: 10.1016/j.prp.2022.154022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
The gene of transcriptional repressor GATA binding 1 (TRPS1), as an atypical GATA transcription factor, has received considerable attention in a plethora of physiological and pathological processes, and may become a promising biomarker for targeted therapies in diseases and tumors. However, there still lacks a comprehensive exploration of its functions and promising clinical applications. Herein, relevant researches published in English from 2000 to 2022 were retrieved from PubMed, Google Scholar and MEDLINE, concerning the roles of TRPS1 in organ differentiation and tumorigenesis. This systematic review predominantly focused on summarizing the structural characteristics and biological mechanisms of TRPS1, its involvement in tricho-rhino-phalangeal syndrome (TRPS), its participation in the development of multiple tissues, the recent advances of its vital features in metabolic disorders as well as malignant tumors, in order to prospect its potential applications in disease detection and cancer targeted therapy. From the clinical perspective, the deeply and thoroughly understanding of the complicated context-dependent and cell-lineage-specific mechanisms of TRPS1 would not only gain novel insights into the complex etiology of diseases, but also provide the fundamental basis for the development of therapeutic drugs targeting both TRPS1 and its critical cofactors, which would facilitate individualized treatment.
Collapse
|