1
|
Xia J, Liu W, Ni Y, Shahzad A, Cui K, Xu Z, Zhang J, Wei Z, Teng Z, Yang Z, Zhang Q. Advances in the impact of ASS1 dysregulation on metabolic reprogramming of tumor cells. Cell Signal 2025; 127:111593. [PMID: 39778698 DOI: 10.1016/j.cellsig.2025.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
ASS1(argininosuccinate synthase 1) is a rate-limiting enzyme in the urea cycle, catalyzing the synthesis of argininosuccinate from citrulline and aspartate to ultimately produce arginine and support cellular metabolism. Increasing evidence suggests that ASS1 is commonly dysregulated in the tumor microenvironment, promoting tumor cell metastasis and infiltration. With a deeper understanding of tumor metabolic reprogramming in recent years, the impact of ASS1 dysregulation on abnormal tumor metabolism has attracted growing interest among researchers. In tumors with lacked or downregulated expression of ASS1, tumor cells become 'addicted' to exogenous arginine. Several strategies for arginine deprivation have been developed and entered clinical trials for treating such tumors. Therefore, we focus on elucidating the commonalities and characteristics of ASS1 dysregulation in tumors, as well as its implications for diagnosis, treatment, and prognosis. The mechanisms by which ASS1 gene dysregulation leads to metabolic abnormalities in tumor cells vary across different types of tumors. Extensive experimental studies have demonstrated that overexpression or low expression of ASS1 exhibits varying effects-either inhibitory or stimulatory proliferation-on tumor cells across different types. Restoring its expression can inhibit proliferation in some tumors lacking or downregulating ASS1 but can promote metastasis and infiltration in others (e.g., resistance to arginine deprivation therapy). Additionally, the expression level of ASS1 dynamically changes during tumorigenesis and progression. Finally, this review discusses the diagnostic, therapeutic, and prognostic value of ASS1 in future clinical practice.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China; Qujing Medical College, Qujing 655011, Yunnan Province, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhenyan Wei
- Yunnan Center for Disease Control and Prevention, Kunming 650022, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, PR China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| |
Collapse
|
2
|
Nan D, Yao W, Huang L, Liu R, Chen X, Xia W, Sheng H, Zhang H, Liang X, Lu Y. Glutamine and cancer: metabolism, immune microenvironment, and therapeutic targets. Cell Commun Signal 2025; 23:45. [PMID: 39856712 PMCID: PMC11760113 DOI: 10.1186/s12964-024-02018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Glutamine is the most abundant amino acid in human serum, and it can provide carbon and nitrogen for biosynthesis, which is crucial for proliferating cells. Moreover, it is widely known that glutamine metabolism is reprogrammed in cancer cells. Many cancer cells undergo metabolic reprogramming targeting glutamine, increasing its uptake to meet their rapid proliferation demands. An increasing amount of study is being done on the particular glutamine metabolic pathways in cancer cells.Further investigation into the function of glutamine in immune cells is warranted given the critical role these cells play in the fight against cancer. Immune cells use glutamine for a variety of biological purposes, including the growth, differentiation, and destruction of cancer cells. With the encouraging results of cancer immunotherapy in recent years, more investigation into the impact of glutamine metabolism on immune cell function in the cancer microenvironment could lead to the discovery of new targets and therapeutic approaches.Oral supplementation with glutamine also enhances the immune capabilities of cancer patients, improves the sensitivity to chemotherapy and radiotherapy, and improves prognosis. The unique metabolism of glutamine in cancer cells, its function in various immune cells, the impact of inhibitors of glutamine metabolism, and the therapeutic use of glutamine supplements are all covered in detail in this article.
Collapse
Affiliation(s)
- Ding Nan
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luanluan Huang
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyan Chen
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hailong Sheng
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Xiaodong Liang
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanwei Lu
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Da Silva MHA, Costa WS, B Sampaio FJ, De Souza DB. The corpus cavernosum after treatment with dutasteride or finasteride: A histomorphometric study in a benign prostatic hyperplasia rodent model. Asian J Androl 2019; 20:505-510. [PMID: 29893293 PMCID: PMC6116690 DOI: 10.4103/aja.aja_28_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Erectile dysfunction is a common side effect of finasteride and dutasteride treatments. The objective of this study was to investigate the structural changes in the penis using a benign prostatic hyperplasia (BPH) rodent model treated with dutasteride or finasteride. Sixty male rats were divided into the following groups: C, untreated control rats; C + D, control rats receiving dutasteride; C + F, control rats receiving finasteride; H, untreated spontaneously hypertensive rats (SHRs); H + D, SHRs treated with dutasteride; and H + F, SHRs treated with finasteride. Treatments were performed for 40 days, and penises were collected immediately thereafter. The organs were analyzed using histomorphometric methods to determine the cross-sectional penile area, as well as the surface density (Sv) of smooth muscle fibers, connective tissue, elastic system fibers, and sinusoidal spaces of the corpus cavernosum. The results were compared using a one-way ANOVA with Bonferroni's posttest. Groups C + D and C + F had a significantly smaller penile cross-sectional area, but more elastic system fiber Sv compared to Group C. Group C + D showed less smooth muscle Sv, and Group H showed more connective tissue but a smaller sinusoidal space Sv in the corpus cavernosum compared to Group C. Groups H + D and H + F had less smooth muscle Sv than Group H. Group H + D also had more connective tissue and elastic system fiber Sv than Group H. Both dutasteride and finasteride promoted penile modifications in the control rat penis, although this affect was greater in Group H animals. In this rodent model, dutasteride was the drug that most affected the corpus cavernosum.
Collapse
Affiliation(s)
- Marcello H A Da Silva
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Waldemar S Costa
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Francisco J B Sampaio
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Diogo B De Souza
- Urogenital Research Unit, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| |
Collapse
|
4
|
Pinto FCM, Campos-Silva P, Souza DBD, Costa WS, Sampaio FJB. Nutritional supplementation with arginine protects radiation-induced effects. An experimental study. Acta Cir Bras 2017; 31:650-654. [PMID: 27828597 DOI: 10.1590/s0102-865020160100000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/18/2016] [Indexed: 11/21/2022] Open
Abstract
PURPOSE: To investigate the protective effect of L-arginine on the prostate (nonneoplasic) of rats with radiation-induced injury. METHODS: Twenty-nine Wistar rats, male adult, allocated into three groups: Control group (C) was not exposed to irradiation (n=10); Radiated group (R) had undergone pelvic irradiation (n=10); Supplemented and radiated group (R+S) had undergone pelvic irradiation plus L-arginine supplementation (n=9). The animals were observed for signs of toxicity. After euthanization, the prostate was dissected under magnification and stained by hematoxylin and eosin to study acinar structures and stained with Picrosirius red for collagen analysis. RESULTS: After radiation exposure, all animals presented diarrhea, but supplementation with L-arginine reduced this effect. The weight gain in the R+S group was significantly higher than in the C and R groups. In the R+S group the collagen density and the prostate acinar area was similar to the R and C groups. Epithelial height was significantly reduced in group R compared with group C (p<0.0001). When comparing the group R+S with R, a statistical difference was observed to be present (p<0.0001). CONCLUSIONS: Pelvic radiation promotes systemic effects and some structural modifications in the ventral prostate of rats. These modifications can be prevented by oral supplementation with L-arginine.
Collapse
Affiliation(s)
- Flavia Cristina Morone Pinto
- Assistant Professor, Researcher, Nucleus of Experimental Surgery, Department of Surgery, Center for Health Sciences, Universidade Federal de Pernambuco (UFPE), Recife-PE, Brazil. Design of the study, histomorphometrical examinations, statistical analysis, manuscript writing
| | - Pamella Campos-Silva
- Graduate student, Urogenital Research Unit, Universidade Estadual do Rio de Janeiro (UERJ), Brazil. Acquisition of data, histomorphometrical examinations
| | - Diogo Benchimol de Souza
- Assistant Professor, Researcher, Urogenital Research Unit, UERJ, Rio de Janeiro-RJ, Brazil. Intellectual and scientific content of the study, functional examination
| | - Waldemar Silva Costa
- Associate Professor, Urogenital Research Unit, UERJ, Rio de Janeiro-RJ, Brazil. Design of the study, manuscript writing, supervised all phases of the study
| | - Francisco José Barcellos Sampaio
- Full Professor, CNPq 1A Researcher, Urogenital Research Unit, UERJ, Rio de Janeiro-RJ, Brazil. Intellectual and scientific content of the study
| |
Collapse
|
5
|
Miyamoto T, Lo PHY, Saichi N, Ueda K, Hirata M, Tanikawa C, Matsuda K. Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53. SCIENCE ADVANCES 2017; 3:e1603204. [PMID: 28560349 PMCID: PMC5438217 DOI: 10.1126/sciadv.1603204] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
The transcription factor p53 is at the core of a built-in tumor suppression system that responds to varying degrees of stress input and is deregulated in most human cancers. Befitting its role in maintaining cellular fitness and fidelity, p53 regulates an appropriate set of target genes in response to cellular stresses. However, a comprehensive understanding of this scheme has not been accomplished. We show that argininosuccinate synthase 1 (ASS1), a citrulline-aspartate ligase in de novo arginine synthesis pathway, was directly transactivated by p53 in response to genotoxic stress, resulting in the rearrangement of arginine metabolism. Furthermore, we found that x-ray irradiation promoted the systemic induction of Ass1 and concomitantly increased plasma arginine levels in p53+/+ mice but not in p53-/- mice. Notably, Ass1+/- mice exhibited hypersensitivity to whole-body irradiation owing to increased apoptosis in the small intestinal crypts. Analyses of ASS1-deficient cells generated using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9) system revealed that ASS1 plays a pivotal role in limiting Akt phosphorylation. In addition, aberrant activation of Akt resulting from ASS1 loss disrupted Akt-mediated cell survival signaling activity under genotoxic stress. Building on these results, we demonstrated that p53 induced an intrinsic Akt repressor, ASS1, and the perturbation of ASS1 expression rendered cells susceptible to genotoxic stress. Our findings uncover a new function of p53 in the regulation of Akt signaling and reveal how p53, ASS1, and Akt are interrelated to each other.
Collapse
Affiliation(s)
- Takafumi Miyamoto
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paulisally Hau Yi Lo
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Naomi Saichi
- Cancer Proteomics Group, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Current Status of Targeted Radioprotection and Radiation Injury Mitigation and Treatment Agents: A Critical Review of the Literature. Int J Radiat Oncol Biol Phys 2017; 98:662-682. [PMID: 28581409 DOI: 10.1016/j.ijrobp.2017.02.211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/17/2023]
Abstract
As more cancer patients survive their disease, concerns about radiation therapy-induced side effects have increased. The concept of radioprotection and radiation injury mitigation and treatment offers the possibility to enhance the therapeutic ratio of radiation therapy by limiting radiation therapy-induced normal tissue injury without compromising its antitumor effect. Advances in the understanding of the underlying mechanisms of radiation toxicity have stimulated radiation oncologists to target these pathways across different organ systems. These generalized radiation injury mechanisms include production of free radicals such as superoxides, activation of inflammatory pathways, and vascular endothelial dysfunction leading to tissue hypoxia. There is a significant body of literature evaluating the effectiveness of various treatments in preventing, mitigating, or treating radiation-induced normal tissue injury. Whereas some reviews have focused on a specific disease site or agent, this critical review focuses on a mechanistic classification of activity and assesses multiple agents across different disease sites. The classification of agents used herein further offers a useful framework to organize the multitude of treatments that have been studied. Many commonly available treatments have demonstrated benefit in prevention, mitigation, and/or treatment of radiation toxicity and warrant further investigation. These drug-based approaches to radioprotection and radiation injury mitigation and treatment represent an important method of making radiation therapy safer.
Collapse
|
7
|
El-Lithy GM, El-Bakly WM, Matboli M, Abd-Alkhalek HA, Masoud SI, Hamza M. Prophylactic L-arginine and ibuprofen delay the development of tactile allodynia and suppress spinal miR-155 in a rat model of diabetic neuropathy. Transl Res 2016; 177:85-97.e1. [PMID: 27392937 DOI: 10.1016/j.trsl.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023]
Abstract
Diabetic neuropathy (DN) is a common complication of diabetes mellitus that is hardly reversible at the late stages. Since treatment of neuropathic pain is predominantly symptomatic, a prophylactic measure would be useful. Both ibuprofen and L-arginine exert antiallodynic effects on chronic constriction injury (CCI)-induced cold allodynia. Furthermore, ibuprofen is effective in CCI-induced mechanical allodynia. The aim of the study was to assess the antiallodynic effect of prophylactic ibuprofen and L-arginine in streptozotocin-induced DN in rats and to further investigate the role of spinal miR-155 and nitric oxide (NO) in this effect. Tactile allodynia was assessed weekly by von Frey filaments. Oral daily administration of ibuprofen, L-arginine and their combination, for 4 weeks starting 1 week after streptozotocin injection (ie, before the development of tactile allodynia), resulted in a significant decrease of tactile allodynia compared with the control diabetic group. This was evident in the fifth week of the experiment. The 3 treatments prevented the decrease in muscle fiber diameter and epidermal thickness, seen in the control diabetic group. Furthermore, ibuprofen, L-arginine and their combination prevented the increase in the spinal NO level and miRNA-155, seen in the control diabetic group. In conclusion, both ibuprofen and L-arginine delayed the development of behavioral and histologic changes of DN, with concomitant suppression of spinal miR-155 and NO level. L-arginine being tolerable may be useful prophylactically in diabetic patients.
Collapse
Affiliation(s)
- Ghada M El-Lithy
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Department of Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hadwa A Abd-Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Somaia I Masoud
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - May Hamza
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
8
|
Abstract
Peyronie's disease (PD) is a localized, wound-healing, connective tissue disorder of the penis characterized by scarring of the tunica albuginea. This fibrous inelastic scar leads to penile pain, penile deformity and erectile dysfunction (ED), and a difficulty performing coitus. Over the past several decades, a myriad of oral agents for the treatment of PD have been studied and suggested. While the gold standard of care remains surgical therapy, many physicians continue to prescribe oral and intralesional injections for treatment during the acute phase of the disease. This article seeks to summarize the different oral therapy agents for PD and the research associated with each medication. While the American Urological Association has not recommended most of the mentioned medications for the treatment of PD, two newer therapies have shown success and have the potential of becoming baseline treatments for the acute phase of PD.
Collapse
Affiliation(s)
| | - Run Wang
- University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
9
|
Mahmood J, Shamah AA, Creed TM, Pavlovic R, Matsui H, Kimura M, Molitoris J, Shukla H, Jackson I, Vujaskovic Z. Radiation-induced erectile dysfunction: Recent advances and future directions. Adv Radiat Oncol 2016; 1:161-169. [PMID: 28740886 PMCID: PMC5514009 DOI: 10.1016/j.adro.2016.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer is one of the most prevalent cancers and the second leading cause of cancer-related deaths in men in the United States. A large number of patients undergo radiation therapy (RT) as a standard care of treatment; however, RT causes erectile dysfunction (radiation-induced erectile dysfunction; RiED) because of late side effects after RT that significantly affects quality of life of prostate cancer patients. Within 5 years of RT, approximately 50% of patients could develop RiED. Based on the past and current research findings and number of publications from our group, the precise mechanism of RiED is under exploration in detail. Recent investigations have shown prostate RT induces significant morphologic arterial damage with aberrant alterations in internal pudendal arterial tone. Prostatic RT also reduces motor function in the cavernous nerve which may attribute to axonal degeneration may contributing to RiED. Furthermore, the advances in radiogenomics such as radiation induced somatic mutation identification, copy number variation and genome-wide association studies has significantly facilitated identification of biomarkers that could be used to monitoring radiation-induced late toxicity and damage to the nerves; thus, genomic- and proteomic-based biomarkers could greatly improve treatment and minimize arterial tissue and nerve damage. Further, advanced technologies such as proton beam therapy that precisely target tumor and significantly reduce off-target damage to vital organs and healthy tissues. In this review, we summarize recent advances in RiED research and novel treatment modalities for RiED. We also discuss the possible molecular mechanism involved in the development of RiED in prostate cancer patients. Further, we discuss various readily available methods as well as novel strategies such as stem cell therapies, shockwave therapy, nerve grafting with tissue engineering, and nutritional supplementations might be used to mitigate or cure sexual dysfunction following radiation treatment.
Collapse
Affiliation(s)
- Javed Mahmood
- Division of Translational Radiation Sciences, Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Aksinija A Shamah
- Division of Translational Radiation Sciences, Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - T Michael Creed
- Division of Translational Radiation Sciences, Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Radmila Pavlovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Hotaka Matsui
- The James Buchanan Brady Urological Institute, and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Masaki Kimura
- Department of Urology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Jason Molitoris
- Division of Translational Radiation Sciences, Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Hem Shukla
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Isabel Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|