1
|
Sun Y, Liu Z, Zhang Z, Kang Y, Wang X, Zhang Y, Liu Y, Zhao P. Human induced pluripotent stem cell models for Alzheimer's disease research: a bibliometric analysis. Front Hum Neurosci 2025; 19:1548701. [PMID: 40177166 PMCID: PMC11962003 DOI: 10.3389/fnhum.2025.1548701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Alzheimer's disease (AD), the leading cause of dementia, remains without adequate treatment. Current models do not fully replicate human physiology and pathology. The advent of human induced pluripotent stem cell (hiPSC) technology offers a novel approach to studying AD. Methods Our study conducted a bibliometric analysis to assess the application and development of hiPSC technology in AD research. We retrieved 531 articles on hiPSC models of AD from the Web of Science Core Collection, published between January 2010 and June 2024. CiteSpace and VOSviewer were used to analyze authorship, geographic contributions, journal influence, and citation patterns. Results Our findings reveal a steady increase in publications over 14 years, with the United States leading in contributions, followed by China. Li-Huei Tsai from the Massachusetts Institute of Technology is a prominent researcher. PLoS One emerges as the most influential journal. Research trends have focused on inflammation, astrocytes, microglia, apolipoprotein E (ApoE), and tau. Discussion Bibliometric analysis is crucial in identifying research gaps and trends and guiding future studies to address unmet needs in understanding and modeling human physiology and pathology. Leveraging hiPSC models to investigate the molecular mechanisms of familial and sporadic AD is expected to provide a crucial foundation for developing future treatment strategies. Conclusion In summary, the bibliometric findings from this study provide a comprehensive overview of the current research landscape in hiPSC models for AD. It also highlights emerging trends and research gaps, crucial for guiding future research efforts, particularly in exploring novel therapeutic targets and improving understanding of disease mechanisms.
Collapse
Affiliation(s)
- Yuning Sun
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Zhilong Liu
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Zongbo Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yufeng Kang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinlian Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yiping Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Pei Zhao
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| |
Collapse
|
2
|
Pourhadi M, Zali H, Ghasemi R, Vafaei-Nezhad S. Promising Role of Oral Cavity Mesenchymal Stem Cell-Derived Extracellular Vesicles in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:6125-6140. [PMID: 35867205 DOI: 10.1007/s12035-022-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been regarded as the beneficial and available tools to treat various hereditary, multifactorial, acute, and chronic diseases. Mesenchymal stem cells can be extracted from numerous sources for clinical purposes while oral cavity-derived mesenchymal stem cells seem to be more effective in neuroregeneration than other sources due to their similar embryonic origins to neuronal tissues. In various studies and different neurodegenerative diseases (NDs), oral cavity mesenchymal stem cells have been applied to prove their promising capacities in disease improvement. Moreover, oral cavity mesenchymal stem cells' secretion is regarded as a novel and practical approach to neuroregeneration; hence, extracellular vesicles (EVs), especially exosomes, may provide promising results to improve CNS defects. This review article focuses on how oral cavity-derived stem cells and their extracellular vesicles can improve neurodegenerative conditions and tries to show which molecules are involved in the recovery process.
Collapse
Affiliation(s)
- Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Vafaei-Nezhad
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Harvey JP, Sladen PE, Yu-Wai-Man P, Cheetham ME. Induced Pluripotent Stem Cells for Inherited Optic Neuropathies-Disease Modeling and Therapeutic Development. J Neuroophthalmol 2022; 42:35-44. [PMID: 34629400 DOI: 10.1097/wno.0000000000001375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inherited optic neuropathies (IONs) cause progressive irreversible visual loss in children and young adults. There are limited disease-modifying treatments, and most patients progress to become severely visually impaired, fulfilling the legal criteria for blind registration. The seminal discovery of the technique for reprogramming somatic nondividing cells into induced pluripotent stem cells (iPSCs) has opened several exciting opportunities in the field of ION research and treatment. EVIDENCE ACQUISITION A systematic review of the literature was conducted with PubMed using the following search terms: autosomal dominant optic atrophy, ADOA, dominant optic atrophy, DOA, Leber hereditary optic neuropathy, LHON, optic atrophy, induced pluripotent stem cell, iPSC, iPSC derived, iPS, stem cell, retinal ganglion cell, and RGC. Clinical trials were identified on the ClinicalTrials.gov website. RESULTS This review article is focused on disease modeling and the therapeutic strategies being explored with iPSC technologies for the 2 most common IONs, namely, dominant optic atrophy and Leber hereditary optic neuropathy. The rationale and translational advances for cell-based and gene-based therapies are explored, as well as opportunities for neuroprotection and drug screening. CONCLUSIONS iPSCs offer an elegant, patient-focused solution to the investigation of the genetic defects and disease mechanisms underpinning IONs. Furthermore, this group of disorders is uniquely amenable to both the disease modeling capability and the therapeutic potential that iPSCs offer. This fast-moving area will remain at the forefront of both basic and translational ION research in the coming years, with the potential to accelerate the development of effective therapies for patients affected with these blinding diseases.
Collapse
Affiliation(s)
- Joshua Paul Harvey
- UCL Institute of Ophthalmology (JPH, PES, PY-W-M, MC), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, PY-W-M), London, United Kingdom; Department of Clinical Neurosciences (PY-W-M), Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom; and Department of Clinical Neurosciences (PY-W-M), John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
4
|
Tsagkaris C, Moysidis DV, Papazoglou AS, Khan A, Papadakos S, Louka AM, Scordilis DM, Shkodina A, Varmpompiti K, Batiha GES, Alexiou A. Current Trends of Stem Cells in Neurodegenerative Diseases. NUTRITIONAL NEUROSCIENCES 2022:311-339. [DOI: 10.1007/978-981-15-9781-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
5
|
Kozlowska U, Nichols C, Wiatr K, Figiel M. From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders. J Neurochem 2021; 162:89-108. [PMID: 34519052 DOI: 10.1111/jnc.15509] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022]
Abstract
The studies of psychedelics, especially psychedelic tryptamines like psilocybin, are rapidly gaining interest in neuroscience research. Much of this interest stems from recent clinical studies demonstrating that they have a unique ability to improve the debilitating symptoms of major depressive disorder (MDD) long-term after only a single treatment. Indeed, the Food and Drug Administration (FDA) has recently designated two Phase III clinical trials studying the ability of psilocybin to treat forms of MDD with "Breakthrough Therapy" status. If successful, the use of psychedelics to treat psychiatric diseases like depression would be revolutionary. As more evidence appears in the scientific literature to support their use in psychiatry to treat MDD on and substance use disorders (SUD), recent studies with rodents revealed that their therapeutic effects might extend beyond treating MDD and SUD. For example, psychedelics may have efficacy in the treatment and prevention of brain injury and neurodegenerative diseases such as Alzheimer's Disease. Preclinical work has highlighted psychedelics' ability to induce neuroplasticity and synaptogenesis, and neural progenitor cell proliferation. Psychedelics may also act as immunomodulators by reducing levels of proinflammatory biomarkers, including IL-1β, IL-6, and tumor necrosis factor-α (TNF-α). Their exact molecular mechanisms, and induction of cellular interactions, especially between neural and glial cells, leading to therapeutic efficacy, remain to be determined. In this review, we discuss recent findings and information on how psychedelics may act therapeutically on cells within the central nervous system (CNS) during brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Urszula Kozlowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Charles Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
6
|
Ebrahimi T, Abasi M, Seifar F, Eyvazi S, Hejazi MS, Tarhriz V, Montazersaheb S. Transplantation of Stem Cells as a Potential Therapeutic Strategy in Neurodegenerative Disorders. Curr Stem Cell Res Ther 2021; 16:133-144. [PMID: 32598273 DOI: 10.2174/1574888x15666200628141314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are considered to have significant capacity to differentiate into various cell types in humans and animals. Unlike specialized cells, these cells can proliferate several times to produce millions of cells. Nowadays, pluripotent stem cells are important candidates to provide a renewable source for the replacement of cells in tissues of interest. The damage to neurons and glial cells in the brain or spinal cord is present in neurological disorders such as Amyotrophic lateral sclerosis, stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, Huntington's disease, spinal cord injury, lysosomal storage disorder, epilepsy, and glioblastoma. Therefore, stem cell transplantation can be used as a novel therapeutic approach in cases of brain and spinal cord damage. Recently, researchers have generated neuron-like cells and glial-like cells from embryonic stem cells, mesenchymal stem cells, and neural stem cells. In addition, several experimental studies have been performed for developing stem cell transplantation in brain tissue. Herein, we focus on stem cell therapy to regenerate injured tissue resulting from neurological diseases and then discuss possible differentiation pathways of stem cells to the renewal of neurons.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- Department of Biotechnology research center, Pasteur institute of Iran, Tehran, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Seifar
- Stem Cell Research Center, Aging Research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammas Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Pacheco-Herrero M, Soto-Rojas LO, Reyes-Sabater H, Garcés-Ramirez L, de la Cruz López F, Villanueva-Fierro I, Luna-Muñoz J. Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. J Alzheimers Dis 2021; 84:917-935. [PMID: 34633316 PMCID: PMC8673502 DOI: 10.3233/jad-200863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases called tauopathies, such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, and Parkinson's disease, among others, are characterized by the pathological processing and accumulation of tau protein. AD is the most prevalent neurodegenerative disease and is characterized by two lesions: neurofibrillary tangles (NFTs) and neuritic plaques. The presence of NFTs in the hippocampus and neocortex in early and advanced stages, respectively, correlates with the patient's cognitive deterioration. So far, no drugs can prevent, decrease, or limit neuronal death due to abnormal pathological tau accumulation. Among potential non-pharmacological treatments, physical exercise has been shown to stimulate the development of stem cells (SCs) and may be useful in early stages. However, this does not prevent neuronal death from the massive accumulation of NFTs. In recent years, SCs therapies have emerged as a promising tool to repopulate areas involved in cognition in neurodegenerative diseases. Unfortunately, protocols for SCs therapy are still being developed and the mechanism of action of such therapy remains unclear. In this review, we show the advances and limitations of SCs therapy. Finally, we provide a critical analysis of its clinical use for AD.
Collapse
Affiliation(s)
- Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Luis O. Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
| | - Heidy Reyes-Sabater
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Linda Garcés-Ramirez
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fidel de la Cruz López
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, UNAM, State of Mexico, Mexico
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Dominican Republic
| |
Collapse
|
8
|
Jee SC, Lee KM, Kim M, Lee YJ, Kim S, Park JO, Sung JS. Neuroprotective Effect of Cudrania tricuspidata Fruit Extracts on Scopolamine-Induced Learning and Memory Impairment. Int J Mol Sci 2020; 21:ijms21239202. [PMID: 33276674 PMCID: PMC7730846 DOI: 10.3390/ijms21239202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Cudrania tricuspidata has diverse biological activities, such as antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. This study investigated the protective effects of C. tricuspidata fruit extracts (CTFE) against scopolamine (SCO)-induced neuron impairment. The neuroprotective effects of CTFE on SCO-induced memory dysfunction were confirmed in mice using the Barnes maze test. The results showed that co-treatment of SCO and CTFE increased the stay time in the target zone compared with SCO treatment alone. Similarly, the results obtained by the fear conditioning test revealed that SCO-CTFE co-treatment induced the freezing action time under both the contextual fear condition and the cued fear condition compared with SCO treatment alone. Moreover, we showed that CTFE reduced the SCO-induced acetylcholinesterase (AChE) activity, thereby increasing the acetylcholine concentration in mice hippocampal tissues. Consistent with the improvement of memory and recognition function in vivo, our in vitro results showed that CTFE induced cAMP response element binding protein (CREB) and extracellular regulated kinase 1/2 (ERK1/2) activity in PC12 cells and reduced SCO-induced AChE activity. In addition, the microarray results of the hippocampal tissue support our data showing that CTFE affects gene expressions associated with neurogenesis and neuronal cell differentiation markers such as spp1 and klk6. Overall, CTFE exerts a neuroprotective effect via regulation of the CREB and ERK1/2 signaling pathways and could be a therapeutic candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jung-Suk Sung
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
9
|
Alzahrani FA, Saadeldin IM, Ahmad A, Kumar D, Azhar EI, Siddiqui AJ, Kurdi B, Sajini A, Alrefaei AF, Jahan S. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes as Immunomodulatory Agents for COVID-19 Patients. Stem Cells Int 2020; 2020:8835986. [PMID: 33014070 PMCID: PMC7512102 DOI: 10.1155/2020/8835986] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/22/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
A novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing lethal acute respiratory disease emerged in December 2019. The World Health Organization named this disease "COVID-19" and declared it a pandemic on March 11, 2020. Many studies have shown that mesenchymal stem cells (MSCs) and their exosomes (MSCs-Exo), which are isolated from allogenic bone marrow stem cells, significantly lower the risk of alveolar inflammation and other pathological conditions associated with distinct lung injuries. For example, in acute respiratory distress syndrome (ARDS) and pneumonia patients, MSCs-Exo and MSCs provide similar healing properties and some clinical trials have used cell-based inhalation therapy which show great promise. MSCs and MSCs-Exo have shown potential in clinical trials as a therapeutic tool for severely affected COVID-19 patients when compared to other cell-based therapies, which may face challenges like the cells' sticking to the respiratory tract epithelia during administration. However, the use of MSCs or MSCs-Exo for treating COVID-19 should strictly adhere to the appropriate manufacturing practices, quality control measurements, preclinical safety and efficacy data, and the proper ethical regulations. This review highlights the available clinical trials that support the therapeutic potential of MSCs or MSCs-Exo in severely affected COVID-19 patients.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Islam M. Saadeldin
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Production College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dipak Kumar
- Zoology Department, KKM College, Munger University, Jamui, India
| | - Esam I. Azhar
- Department of Medical Laboratories, College of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Bassem Kurdi
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahim Sajini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | | | - Sadaf Jahan
- College of Applied Medical Science, Majmaah University, Al Majmaah, Saudi Arabia
| |
Collapse
|
10
|
Sun J, Ma X, Chu HT, Feng B, Tuan RS, Jiang Y. Biomaterials and Advanced Biofabrication Techniques in hiPSCs Based Neuromyopathic Disease Modeling. Front Bioeng Biotechnol 2019; 7:373. [PMID: 31850331 PMCID: PMC6895005 DOI: 10.3389/fbioe.2019.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are reprogrammed somatic cells by defined factors, and have great application potentials in tissue regeneration and disease modeling. Biomaterials have been widely used in stem cell-based studies, and are involved in human iPSCs based studies, but they were not enough emphasized and recognized. Biomaterials can mimic the extracellular matrix and microenvironment, and act as powerful tools to promote iPSCs proliferation, differentiation, maturation, and migration. Many classic and advanced biofabrication technologies, such as cell-sheet approach, electrospinning, and 3D-bioprinting, are used to provide physical cues in macro-/micro-patterning, and in combination with other biological factors to support iPSCs applications. In this review, we highlight the biomaterials and fabrication technologies used in human iPSC-based tissue engineering to model neuromyopathic diseases, particularly those with genetic mutations, such as Duchenne Muscular Dystrophy (DMD), Congenital Heart Diseases (CHD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jing Sun
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xun Ma
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Ting Chu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bo Feng
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Rocky S Tuan
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Khaspekov LG. Modeling of Alzheimer’s Disease and Outlooks for its Therapy Using Induced Pluripotent Stem Cells. NEUROCHEM J+ 2019. [DOI: 10.1134/s181971241902003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Nacmias B, Bagnoli S, Piaceri I, Sorbi S. Genetic Heterogeneity of Alzheimer's Disease: Embracing Research Partnerships. J Alzheimers Dis 2019; 62:903-911. [PMID: 29103034 PMCID: PMC5870047 DOI: 10.3233/jad-170570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Studies on the genetics of Alzheimer’s disease (AD) have revealed the complexity and heterogeneity of the disease. All our studies have supported this evidence and contribute to the current understanding of the genetic architecture of AD. This report reviews the success of our investigations, focusing on the implications and importance of the genetics of AD, and demonstrates the relevance of research strategies embracing partnerships.
Collapse
Affiliation(s)
- Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Don Gnocchi, Florence, Italy
| |
Collapse
|
13
|
Deming Y, Li Z, Benitez BA, Cruchaga C. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease? Expert Opin Ther Targets 2018; 22:587-598. [PMID: 29889572 DOI: 10.1080/14728222.2018.1486823] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.
Collapse
Affiliation(s)
- Yuetiva Deming
- a Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA
| | - Zeran Li
- a Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA
| | - Bruno A Benitez
- b Department of Medicine , Washington University School of Medicine , St Louis , MO , USA
| | - Carlos Cruchaga
- a Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA.,c Department of Developmental Biology , Washington University School of Medicine , St Louis , MO , USA.,d Knight Alzheimer's Disease Research Center , Washington University School of Medicine , St Louis , MO , USA.,e Hope Center for Neurological Disorders , Washington University School of Medicine , St Louis , MO , USA
| |
Collapse
|
14
|
Zayed H, Petersen I. Stem cell transcription factor SOX2 in synovial sarcoma and other soft tissue tumors. Pathol Res Pract 2018; 214:1000-1007. [PMID: 29773426 DOI: 10.1016/j.prp.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND SOX2 has gained considerable interest as a pluripotency inducing gene. Co-transfection of SOX2 together with NANOG, KLF4 and c-MYC into adult fibroblasts was able to generate pluripotent stem cells. SOX2 has been reported to be expressed in synovial sarcoma, a tumor being characterized by the SS18-SSX gene fusion forming part of the SWI/SNF chromatin remodeling complex that affects histone methylation. The role of SOX2 in this tumor type as well as other soft tissue tumor entities however is still poorly characterized. We analyzed SOX2 protein expression in soft tissue tumors. Alongside we tested Histone H3 expression (H3K27me3) in SOX2 positive cases to investigate this epigenetic mark and its correlation with the SOX2 status and clinicopathological parameters. METHODOLOGY In total, 60 samples of synovial sarcomas from the reference center for soft tissue tumors at the institute of pathology of the Jena University hospital were included into the study along with 343 other tissue tumors. Protein analysis was done by immunohistochemistry of tissue microarrays. All synovial sarcoma cases were confirmed by molecular testing using SS18 FISH break apart probes. RESULTS SOX2 reactivity was detectable in 35 synovial sarcoma cases (58.3%) while 25 (41.7%) were negative. Only 13 cases of the other 343 soft tissue tumors, varying from nodular fasciitis to undifferentiated pleomorphic sarcoma, revealed a SOX2 expression, 12 out of these were undifferentiated high grade sarcoma. There was no obvious correlation with the clinicopathological data. H3K27me3 immunohistochemistry of the synovial sarcoma cases revealed a high statistically significant correlation between SOX2 and H3K27me3 expression (p < 0,0005, Chi square test). Similar to SOX2, there was no correlation between H3K27me3 expression and tumor grade. Six SOX2 positive synovial sarcoma cases were analyzed by FISH using a SOX2/CEN3 dual color FISH probe. None of these cases revealed an amplification of the SOX2 gene. CONCLUSION The data confirms previous studies reporting SOX2 and H3K27me3 expression in synovial sarcoma and reveals that both biomarkers are related to each other. It strengthens the notion that the tumor type is driven by epigenetic processes similar to those that are operating in pluripotent stem cells. The relevance of these parameters in the pathway pathology of synovial sarcoma, i.e. the timing and dosing of SOX2 and H3K27me3 expression initiated by the SS18-SSX driver mutation together with the interplay of these events with other signaling pathways, cellular mechanisms and additional mutations in tumor progression, will require further studies.
Collapse
Affiliation(s)
- Heba Zayed
- Institute of Pathology, Jena University Hospital, Germany; National Cancer Institute, Cairo University, Egypt
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Germany.
| |
Collapse
|
15
|
Zhou CL, Zhao L, Shi HY, Liu JW, Shi JW, Kan BH, Li Z, Yu JC, Han JX. Combined acupuncture and HuangDiSan treatment affects behavior and synaptophysin levels in the hippocampus of senescence-accelerated mouse prone 8 after neural stem cell transplantation. Neural Regen Res 2018; 13:541-548. [PMID: 29623942 PMCID: PMC5900520 DOI: 10.4103/1673-5374.228760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory impairment and behavioral function in dementia-model mice. Thus, we sought to determine whether Sanjiao acupuncture and HuangDiSan can elevate the effect of neural stem cell transplantation in Alzheimer's disease model mice. Sanjiao acupuncture was used to stimulate Danzhong (CV17), Zhongwan (CV12), Qihai (CV6), bilateral Xuehai (SP10) and bilateral Zusanli (ST36) 15 days before and after implantation of neural stem cells (5 × 105) into the hippocampal dentate gyrus of SAMP8 mice. Simultaneously, 0.2 mL HuangDiSan, containing Rehmannia Root and Chinese Angelica, was intragastrically administered. Our results demonstrated that compared with mice undergoing neural stem cell transplantation alone, learning ability was significantly improved and synaptophysin mRNA and protein levels were greatly increased in the hippocampus of mice undergoing both Sanjiao acupuncture and intragastric administration of HuangDiSan. We conclude that the combination of Sanjiao acupuncture and HuangDiSan can effectively improve dementia symptoms in mice, and the mechanism of this action might be related to the regulation of synaptophysin expression.
Collapse
Affiliation(s)
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Hui-yan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Jian-wei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiang-wei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo-hong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Zhen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Jian-chun Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing-xian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Kwak KA, Lee SP, Yang JY, Park YS. Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer's Disease. Stem Cells Int 2018; 2018:6392986. [PMID: 29686714 PMCID: PMC5852851 DOI: 10.1155/2018/6392986] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder featuring memory loss and cognitive impairment, is caused by synaptic failure and the excessive accumulation of misfolded proteins. Many unsuccessful attempts have been made to develop new small molecules or antibodies to intervene in the disease's pathogenesis. Stem cell-based therapies cast a new hope for AD treatment as a replacement or regeneration strategy. The results from recent preclinical studies regarding stem cell-based therapies are promising. Human clinical trials are now underway. However, a number of questions remain to be answered prior to safe and effective clinical translation. This review explores the pathophysiology of AD and summarizes the relevant stem cell research according to cell type. We also briefly summarize related clinical trials. Finally, future perspectives are discussed with regard to their clinical applications.
Collapse
Affiliation(s)
- Kyeong-Ah Kwak
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seung-Pyo Lee
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Yang
- Department of Dental Hygiene, Daejeon Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young-Seok Park
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Ricca A, Gritti A. Perspective on innovative therapies for globoid cell leukodystrophy. J Neurosci Res 2017; 94:1304-17. [PMID: 27638612 DOI: 10.1002/jnr.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a lysosomal storage disorder resulting from deficiency of the lysosomal hydrolase galactosylceramidase. The infantile forms are characterized by a unique relentless and aggressive progression with a wide range of neurological symptoms and complications. Here we review and discuss the basic concepts and the novel mechanisms identified as key contributors to the peculiar GLD pathology, highlighting their therapeutic implications. Then, we evaluate evidence from extensive experimental studies on GLD animal models that have highlighted fundamental requirements to obtain substantial therapeutic benefit, including early and timely intervention, high levels of enzymatic reconstitution, and global targeting of affected tissues. Continuous efforts in understanding GLD pathophysiology, the interplay between various therapies, and the mechanisms of disease correction upon intervention may allow advancing research with innovative approaches and prioritizing treatment strategies to develop more efficacious treatments. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
18
|
Tang BL. The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy – a perspective on cell biological mechanisms. Rev Neurosci 2017; 28:725-738. [DOI: 10.1515/revneuro-2017-0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
AbstractRecent clinical trials of mesenchymal stem cells (MSCs) transplantation have demonstrated procedural safety and clinical proof of principle with a modest indication of benefit in patients with amyotrophic lateral sclerosis (ALS). While replacement therapy remained unrealistic, the clinical efficacy of this therapeutic option could be potentially enhanced if we could better decipher the mechanisms underlying some of the beneficial effects of transplanted cells, and work toward augmenting or combining these in a strategic manner. Novel ways whereby MSCs could act in modifying disease progression should also be explored. In this review, I discuss the known, emerging and postulated mechanisms of action underlying effects that transplanted MSCs may exert to promote motor neuron survival and/or to encourage regeneration in ALS. I shall also speculate on how transplanted cells may alter the diseased environment so as to minimize non-neuron cell autonomous damages by immune cells and astrocytes.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
19
|
Shen Z, Li X, Bao X, Wang R. Microglia-targeted stem cell therapies for Alzheimer disease: A preclinical data review. J Neurosci Res 2017. [PMID: 28643422 DOI: 10.1002/jnr.24066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a severe, life-threatening illness characterized by gradual memory loss. The classic histological features of AD include extracellular formation of β-amyloid plaques (Aβ), intracellular neurofibrillary tangles (NFT), and synaptic loss. Recently, accumulated evidence has confirmed the critical role of microglia in the development and exacerbation of AD. When Aβ forms deposits, microglia quickly respond to restore brain physiology by activating a series of repair mechanisms. However, prolonged microglial activation is considered detrimental and may aggravate AD progression. To date, there are no curative therapies for AD. The advent of stem cell transplantation offers novel strategies to treat AD in animal models. Furthermore, studies have reported that transplanted stem cells might ameliorate AD symptoms by regulating microglial functions, from detrimental to protective. This review focuses on the crucial functions of microglia in AD and examines the reactions of microglia to transplanted stem cells.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueyuan Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Interleukin-6-Mediated Induced Pluripotent Stem Cell (iPSC)-Derived Neural Differentiation. Mol Neurobiol 2017; 55:3513-3522. [PMID: 28509081 DOI: 10.1007/s12035-017-0594-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
In an aging society with an increasing threat to higher brain cognitive functions due to dementia, it becomes imperative to identify new molecular remedies for supporting adult neurogenesis. Interleukin-6 (IL-6) is a promising cytokine that can support neurogenesis under conditions of neurodegeneration, and neuron replacement is eventually possible due to its agonistic acting soluble receptor sIL-6R. Here, we report that activation of the IL-6-signal transducer and activator of transcription 3 (STAT3) axis is neurogenic and has potential therapeutic applications for the treatment of neurodegenerative diseases such as Parkinson's disease (PD).
Collapse
|
21
|
Higashida H, Yokoyama S, Tsuji C, Muramatsu SI. Neurotransmitter release: vacuolar ATPase V0 sector c-subunits in possible gene or cell therapies for Parkinson's, Alzheimer's, and psychiatric diseases. J Physiol Sci 2017; 67:11-17. [PMID: 27289535 PMCID: PMC10717279 DOI: 10.1007/s12576-016-0462-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
Abstract
We overview the 16-kDa proteolipid mediatophore, the transmembrane c-subunit of the V0 sector of the vacuolar proton ATPase (ATP6V0C) that was shown to mediate the secretion of acetylcholine. Acetylcholine, serotonin, and dopamine (DA) are released from cell soma and/or dendrites if ATP6V0C is expressed in cultured cells. Adeno-associated viral vector-mediated gene transfer of ATP6V0C into the caudate putamen enhanced the depolarization-induced overflow of endogenous DA in Parkinson-model mice. Motor impairment was ameliorated in hemiparkinsonian model mice when ATP6V0C was expressed with DA-synthesizing enzymes. The review discusses application in the future as a potential tool for gene therapy, cell transplantation therapy, and inducible pluripotent stem cell therapy in neurological diseases, from the view point of recent findings regarding vacuolar ATPase.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Kanazawa University Research Center for Child Mental Development, Kanazawa, 920-8640, Japan.
| | - Shigeru Yokoyama
- Kanazawa University Research Center for Child Mental Development, Kanazawa, 920-8640, Japan
| | - Chiharu Tsuji
- Kanazawa University Research Center for Child Mental Development, Kanazawa, 920-8640, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
- Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
22
|
Li X, Zhu H, Sun X, Zuo F, Lei J, Wang Z, Bao X, Wang R. Human Neural Stem Cell Transplantation Rescues Cognitive Defects in APP/PS1 Model of Alzheimer's Disease by Enhancing Neuronal Connectivity and Metabolic Activity. Front Aging Neurosci 2016; 8:282. [PMID: 27932977 PMCID: PMC5120101 DOI: 10.3389/fnagi.2016.00282] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD), the most frequent type of dementia, is featured by Aβ pathology, neural degeneration and cognitive decline. To date, there is no cure for this disease. Neural stem cell (NSC) transplantation provides new promise for treating AD. Many studies report that intra-hippocampal transplantation of murine NSCs improved cognition in rodents with AD by alleviating neurodegeneration via neuronal complement or replacement. However, few reports examined the potential of human NSC transplantation for AD. In this study, we implanted human brain-derived NSCs (hNSCs) into bilateral hippocampus of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mouse model of AD to test the effects of hNSC transplantation on Alzheimer’s behavior and neuropathology. Six weeks later, transplanted hNSCs engrafted into the brains of AD mice, migrated dispersedly in broad brain regions, and some of them differentiated into neural cell types of central nervous system (CNS). The hNSC transplantation restored the recognition, learning and memory deficits but not anxiety tasks in AD mice. Although Aβ plaques were not significantly reduced, the neuronal, synaptic and nerve fiber density was significantly increased in the frontal cortex and hippocampus of hNSC-treated AD mice, suggesting of improved neuronal connectivity in AD brains after hNSC transplantation. Ultrastructural analysis confirmed that synapses and nerve fibers maintained relatively well-structured shapes in these mice. Furthermore, in vivo magnetic resonance spectroscopy (MRS) showed that hNSC-treated mice had notably increased levels of N-acetylaspartate (NAA) and Glu in the frontal cortex and hippocampus, suggesting that neuronal metabolic activity was improved in AD brains after hNSC transplantation. These results suggest that transplanted hNSCs rescued Alzheimer’s cognition by enhancing neuronal connectivity and metabolic activity through a compensation mechanism in APP/PS1 mice. This study provides preclinical evidence that hNSC transplantation can be a possible and feasible strategy for treating patients with AD.
Collapse
Affiliation(s)
- Xueyuan Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Hua Zhu
- Department of Pathology, Comparative Medical Center, Peking Union Medical College and Institute of Laboratory Animal Science, Chinese Academy of Medical Science Beijing, China
| | - Xicai Sun
- Center for Stem Cell Biology and Regenerative Medicine, Center for Life Sciences, School of Medicine, Tsinghua University Beijing, China
| | - Fuxing Zuo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Jianfeng Lei
- Center for Medical Experiments and Testing, Capital Medical University Beijing, China
| | - Zhanjing Wang
- Center for Stem Cell Biology and Regenerative Medicine, Center for Life Sciences, School of Medicine, Tsinghua University Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| |
Collapse
|