1
|
Mahale RR, Padmanabha H, Mailankody P. CSF1R-related disorder: A clinical, imaging and genetic profile review. Neurol Sci 2025:10.1007/s10072-025-08146-2. [PMID: 40146342 DOI: 10.1007/s10072-025-08146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Colony-stimulating factor 1 receptor (CSF1R) -related disorder (CSF1R-RD) is a primary microgliopathy with a distinct clinical, imaging and genetic profile. OBJECTIVE Description of the clinical, imaging and genetic profile of CSF1R-RD and comparison of Indian cohort with Asian, European and American cohort. METHODS Report of 2 cases of CSF1R-RD and review of reported cases of genetically confirmed CSF1R-RD since 2012 from Indian, Asian, European and American cohorts. RESULTS Two patients were females with age at onset at 40 and 42 years. The duration of symptoms was 2 and 5 years. Both had spasticity, cognitive impairment and psychiatric disturbances. Brain imaging showed hyperintensities in the cerebral white mater involving deep and periventricular white mater with diffusion restriction in one patient. There was diffuse cerebral and corpus callosum atrophy. Genetics showed heterozygous missense variants in exon 18 of the CSF1R gene in both patients. The Indian cohort of 5 patients had additional symptoms of dysarthria, dysphagia, parkinsonism, tremor and gait abnormality, similar radiological features. The Asian, European and American cohort had similar clinical and radiological features. Seizures were more commonly reported in America cohort and presence of calcification was less common imaging abnormality in all cohorts. Genetic profiling showed heterozygous predominantly missense variants in the TKD in all cohorts. CONCLUSION CSF1R-RD has distinct clinical profile of cognitive impairment, spasticity, psychiatric disturbances with dysarthria, dysphagia, parkinsonism, tremor, ataxia, seizures, aphasia and gait abnormality. Calcification is less common radiological abnormality with heterozygous missense variants in the TKD as the common genetic variant.
Collapse
Affiliation(s)
- Rohan Ramachandra Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences, First Floor, Neurosciences Faculty Block, Hosur Road, Bengaluru, 560029, Karnataka, India.
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, First Floor, Neurosciences Faculty Block, Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Pooja Mailankody
- Department of Neurology, National Institute of Mental Health and Neurosciences, First Floor, Neurosciences Faculty Block, Hosur Road, Bengaluru, 560029, Karnataka, India
| |
Collapse
|
2
|
Schmitz AS, Raju J, Köhler W, Klebe S, Cheheb K, Reschke F, Biskup S, Haack TB, Roeben B, Kellner M, Rahner N, Bloch T, Lemke J, Bender B, Schöls L, Hengel H, Hayer SN. Novel variants in CSF1R associated with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). J Neurol 2024; 271:6025-6037. [PMID: 39031193 PMCID: PMC11377666 DOI: 10.1007/s00415-024-12557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
The CSF1R gene, located on chromosome 5, encodes a 108 kDa protein and plays a critical role in regulating myeloid cell function. Mutations in CSF1R have been identified as a cause of a rare white matter disease called adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP, also known as CSF1R-related leukoencephalopathy), characterized by progressive neurological dysfunction. This study aimed to broaden the genetic basis of ALSP by identifying novel CSF1R variants in patients with characteristic clinical and imaging features of ALSP. Genetic analysis was performed through whole-exome sequencing or panel analysis for leukodystrophy genes. Variant annotation and classification were conducted using computational tools, and the identified variants were categorized following the recommendations of the American College of Medical Genetics and Genomics (ACMG). To assess the evolutionary conservation of the novel variants within the CSF1R protein, amino acid sequences were compared across different species. The study identified six previously unreported CSF1R variants (c.2384G>T, c.2133_2919del, c.1837G>A, c.2304C>A, c.2517G>T, c.2642C>T) in seven patients with ALSP, contributing to the expanding knowledge of the genetic diversity underlying this rare disease. The analysis revealed considerable genetic and clinical heterogeneity among these patients. The findings emphasize the need for a comprehensive understanding of the genetic basis of rare diseases like ALSP and underscored the importance of genetic testing, even in cases with no family history of the disease. The study's contribution to the growing spectrum of ALSP genetics and phenotypes enhances our knowledge of this condition, which can be crucial for both diagnosis and potential future treatments.
Collapse
Affiliation(s)
- Anne S Schmitz
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Janani Raju
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Wolfgang Köhler
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Khaled Cheheb
- Department of Neurology, DRK Kamillus Klinik, Asbach, Germany
| | - Franziska Reschke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
- Humangenetik und Pränatal-Medizin MVZ GmbH, Eurofins, München, Germany
| | - Saskia Biskup
- CeGaT GmbH and Zentrum Für Humangenetik, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Roeben
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Melanie Kellner
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Nils Rahner
- Institut Für Klinische Genetik Und Tumorgenetik Bonn, Bonn, Germany
| | | | - Johannes Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Benjamin Bender
- Department of Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Holger Hengel
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Stefanie N Hayer
- Hertie Institute for Clinical Brain Research, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany.
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Han Y, Han J, Li Z, Chen S, Liu J, Zhou R, Zhao S, Li D, Liu Z, Zhao Y, Hao J, Chai G. Identification and characterization of a novel intronic splicing mutation in CSF1R-related leukoencephalopathy. CNS Neurosci Ther 2024; 30:e14815. [PMID: 38922778 PMCID: PMC11194178 DOI: 10.1111/cns.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS Colony stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rapidly progressing neurodegenerative disease caused by CSF1R gene mutations. This study aimed to identify and investigate the effect of a novel intronic mutation (c.1754-3C>G) of CSF1R on splicing. METHODS A novel intronic mutation was identified using whole-exome sequencing. To investigate the impact of this mutation, we employed various bioinformatics tools to analyze the transcription of the CSF1R gene and the three-dimensional structure of its encoded protein. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the findings. RESULTS A novel mutation (c.1754-3C>G) in CSF1R was identified, which results in exon 13 skipping due to the disruption of the 3' splice site consensus sequence NYAG/G. This exon skipping event was further validated in the peripheral blood of the mutation carrier through RT-PCR and Sanger sequencing. Protein structure prediction indicated a disruption in the tyrosine kinase domain, with the truncated protein showing significant structural alterations. CONCLUSIONS Our findings underscore the importance of intronic mis-splicing mutations in the diagnosis and management of CSF1R-related leukoencephalopathy.
Collapse
Affiliation(s)
- Yilai Han
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Jinming Han
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Zhen Li
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Siqi Chen
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Ju Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Ruxing Zhou
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Shufang Zhao
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Dawei Li
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Zheng Liu
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Yinan Zhao
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Junwei Hao
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
- Key Laboratory for Neurodegenerative Diseases of Ministry of EducationBeijingChina
| | - Guoliang Chai
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
- Chinese Institutes for Medical ResearchBeijingChina
| |
Collapse
|
4
|
Papapetropoulos S, Gelfand JM, Konno T, Ikeuchi T, Pontius A, Meier A, Foroutan F, Wszolek ZK. Clinical presentation and diagnosis of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia: a literature analysis of case studies. Front Neurol 2024; 15:1320663. [PMID: 38529036 PMCID: PMC10962389 DOI: 10.3389/fneur.2024.1320663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Because adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare, rapidly progressive, debilitating, and ultimately fatal neurodegenerative disease, a rapid and accurate diagnosis is critical. This analysis examined the frequency of initial misdiagnosis of ALSP via comprehensive review of peer-reviewed published cases. Methods Data were extracted from a MEDLINE search via PubMed (January 1, 1980, through March 22, 2022) from eligible published case reports/series for patients with an ALSP diagnosis that had been confirmed by testing for the colony-stimulating factor-1 receptor gene (CSF1R) mutation. Patient demographics, clinical symptoms, brain imaging, and initial diagnosis data were summarized descriptively. Categorical data for patient demographics, symptoms, and brain imaging were stratified by initial diagnosis category to test for differences in initial diagnosis based on each variable. Results Data were extracted from a cohort of 291 patients with ALSP from 93 published case reports and case series. Mean (standard deviation) age of symptom onset was 43.2 (11.6) years. A family history of ALSP was observed in 59.1% of patients. Cognitive impairment (47.1%) and behavioral and psychiatric abnormalities (26.8%) were the most frequently reported initial symptoms. Of 291 total cases, an accurate initial diagnosis of ALSP was made in 72 cases (24.7%) and the most frequent initial misdiagnosis categories were frontotemporal dementia (28 [9.6%]) and multiple sclerosis (21 [7.2%]). Of the 219 cases (75.3%) that were initially mis- or undiagnosed, 206 cases (94.1%) were later confirmed as ALSP by immunohistology, imaging, and/or genetic testing; for the remaining 13 cases, no final diagnosis was reported. Initial diagnosis category varied based on age, family history, geographic region, mode of inheritance, and presenting symptoms of pyramidal or extrapyramidal motor dysfunction, behavioral and psychiatric abnormalities, cognitive impairment, and speech difficulty. Brain imaging abnormalities were common, and initial diagnosis category was significantly associated with white matter hyperintensities, white matter calcifications, and ventricular enlargement. Discussion In this literature analysis, ALSP was frequently misdiagnosed. Improving awareness of this condition and distinguishing it from other conditions with overlapping presenting symptoms is important for timely management of a rapidly progressive disease such as ALSP.
Collapse
Affiliation(s)
| | | | - Takuya Konno
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Andreas Meier
- Vigil Neuroscience, Inc., Watertown, MA, United States
| | - Farid Foroutan
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
5
|
Rush BK, Tipton PW, Strongosky A, Wszolek ZK. Neuropsychological profile of CSF1R-related leukoencephalopathy. Front Neurol 2023; 14:1155387. [PMID: 37333006 PMCID: PMC10272847 DOI: 10.3389/fneur.2023.1155387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The neuropsychological profile of CSF1R-related leukoencephalopathy (CRL) is undefined. This study defines the profile, contrasts it with that of other dementia syndromes, and highlights measures sensitive to cognitive impairment. Methods We administered a standardized battery of neuropsychological tests to five consecutive CRL cases. Results The neuropsychological profile of CRL reflects impaired general cognitive function, processing speed, executive function, speeded visual problem solving, verbal fluency, and self-reported depression and anxiety. Confrontation naming and memory are preserved. Within cognitive domains, certain measures more frequently identified impairment than others. Discussion CRL impairs general cognitive function, processing speed, executive function. Language and visual problem solving may be impaired if processing speed is required. Confrontation naming and memory are uniquely preserved, contrasting CRL to other dementia syndromes. Cognitive screens excluding processing speed and executive function may not detect CRL cognitive manifestations. Findings sharply define cognitive impairment of CRL and inform cognitive test selection.
Collapse
Affiliation(s)
- Beth K. Rush
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, United States
| | - Philip W. Tipton
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | - Audrey Strongosky
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | | |
Collapse
|