1
|
Park JM, Park HJ, Yoon SY, Kim YW, Shin JI, Lee SC. Effects of Robot-Assisted Therapy for Upper Limb Rehabilitation After Stroke: An Umbrella Review of Systematic Reviews. Stroke 2025; 56:1243-1252. [PMID: 40115991 DOI: 10.1161/strokeaha.124.048183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Robotic rehabilitation, which provides a high-intensity, high-frequency therapy to improve neuroplasticity, is gaining traction. However, its effectiveness for upper extremity stroke rehabilitation remains uncertain. This study comprehensively reviewed meta-analyses on the effectiveness of upper extremity robot-assisted therapy in patients with stroke. METHODS We combined results from 396 randomized controlled trials (RCTs) in 16 meta-analyses and conducted a new meta-analysis using nonoverlapping RCTs and 6 additional RCTs published after 2024. Duplicate studies were removed, all data were from RCTs, and a random-effects model resolved heterogeneity. Effects were analyzed by comparing robot-assisted therapy with conventional therapy at the same dose and as an add-on to conventional therapy. RESULTS Compared with conventional therapy, the effect of robot-assisted therapy on the Fugl-Meyer assessment was summarized as a significant standardized mean difference (SMD) of 0.29 (95% CI, 0.14-0.44; number of individual RCTs reanalyzed, 100 RCTs), and the additional effect of robot-assisted therapy was an SMD of 0.42 (95% CI, 0.23-0.61; 16 RCTs). However, these Fugl-Meyer assessment improvements did not meet the minimum clinically important difference thresholds identified in previous studies: 12.4 for subacute and 3.5 for chronic stroke. For activities of daily living, only the additional effect was significant by SMD of 0.35 (95% CI, 0.17-0.54; 26 RCTs), muscle strength was significant by SMD of 0.46 (95% CI, 0.22-0.70; 31 RCTs), and spasticity was not significant by SMD of -0.25 (95% CI, -0.55 to 0.06; 25 RCTs). CONCLUSIONS Robot-assisted therapy shows statistically significant improvements in motor recovery as measured by the Fugl-Meyer assessment in patients with stroke, both at the same dose and as an add-on to conventional therapy; however, these improvements do not meet the minimum clinically important difference. These benefits are consistent across different stages of stroke recovery, different types of robotic devices, duration of intervention, and training sites. However, the heterogeneity of included studies in patient population, stroke severity, intervention protocol, and robot type limits generalizability. High-quality trials are needed to better define the value of robot-assisted therapy across various devices and strategies.
Collapse
Affiliation(s)
- Jong Mi Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (J.M.P., H.J.P., S.Y.Y., Y.W.K., S.C.L.)
| | - Hee Jae Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (J.M.P., H.J.P., S.Y.Y., Y.W.K., S.C.L.)
| | - Seo Yeon Yoon
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (J.M.P., H.J.P., S.Y.Y., Y.W.K., S.C.L.)
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (J.M.P., H.J.P., S.Y.Y., Y.W.K., S.C.L.)
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea (J.I.S.)
- The Center for Medical Education Training and Professional Development in Yonsei-Donggok Medical Education Institute, Seoul, Republic of Korea (J.I.S.)
- Severance Underwood Meta-Research Center, Institute of Convergence Science, Yonsei University, Seoul, South Korea (J.I.S.)
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (J.M.P., H.J.P., S.Y.Y., Y.W.K., S.C.L.)
| |
Collapse
|
2
|
Tseng KC, Wang L, Hsieh C, Wong AM. Portable robots for upper-limb rehabilitation after stroke: a systematic review and meta-analysis. Ann Med 2024; 56:2337735. [PMID: 38640459 PMCID: PMC11034452 DOI: 10.1080/07853890.2024.2337735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/28/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Robot-assisted upper-limb rehabilitation has been studied for many years, with many randomised controlled trials (RCTs) investigating the effects of robotic-assisted training on affected limbs. The current trend directs towards end-effector devices. However, most studies have focused on the effectiveness of rehabilitation devices, but studies on device sizes are relatively few. GOAL Systematically review the effect of a portable rehabilitation robot (PRR) on the rehabilitation effectiveness of paralysed upper limbs compared with non-robotic therapy. METHODS A meta-analysis was conducted on literature that included the Fugl-Meyer Assessment (FMA) obtained from the PubMed and Web of Science (WoS) electronic databases until June 2023. RESULTS A total of 9 studies, which included RCTs, were completed and a meta-analysis was conducted on 8 of them. The analysis involved 295 patients. The influence on upper-limb function before and after treatment in a clinical environment is analysed by comparing the experimental group using the portable upper-limb rehabilitation robot with the control group using conventional therapy. The result shows that portable robots prove to be effective (FMA: SMD = 0.696, 95% = 0.099 to.293, p < 0.05). DISCUSSION Both robot-assisted and conventional rehabilitation effects are comparable. In some studies, PRR performs better than conventional rehabilitation, but conventional treatments are still irreplaceable. Smaller size with better portability has its advantages, and portable upper-limb rehabilitation robots are feasible in clinical rehabilitation. CONCLUSION Although portable upper-limb rehabilitation robots are clinically beneficial, few studies have focused on portability. Further research should focus on modular design so that rehabilitation robots can be decomposed, which benefits remote rehabilitation and household applications.
Collapse
Affiliation(s)
- Kevin C. Tseng
- Department of Industrial Design, National Taipei University of Technology, Taipei, Taiwan, ROC
- Product Design and Development Laboratory, Taoyuan, Taiwan, ROC
| | - Le Wang
- Product Design and Development Laboratory, Taoyuan, Taiwan, ROC
| | - Chunkai Hsieh
- Product Design and Development Laboratory, Taoyuan, Taiwan, ROC
| | - Alice M. Wong
- Product Design and Development Laboratory, Taoyuan, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan, ROC
| |
Collapse
|
3
|
Su T, Wang M, Chen Z, Feng L. Effect of Upper Robot-Assisted Training on Upper Limb Motor, Daily Life Activities, and Muscular Tone in Patients With Stroke: A Systematic Review and Meta-Analysis. Brain Behav 2024; 14:e70117. [PMID: 39482838 PMCID: PMC11527818 DOI: 10.1002/brb3.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Upper limb rehabilitation robot is a relatively new technology, but its effectiveness remains debatable due to the inconsistent results of clinical trials. This article intends to assess how upper limb rehabilitation robots help the functional recovery of stroke patients. METHODS PubMed, Embase, Cochrane Library, and Web of Science databases were searched for eligible studies to explore the effect of upper limb rehabilitation robots on upper limb motor function, muscle tone, and daily living activities. RESULTS Eighteen trials with 573 stroke patients met the inclusion criteria. The results showed that compared to conventional rehabilitation training, patients who received upper limb robotic therapy (RT) had significantly improved Fugl-Meyer Upper Extremity Motor Assessment (FMA-UE) scores (weighted mean differences [WMD]: 5.27, 95% confidence intervals [CI]: 3.36, 7.17), Action Research Arm Test (ARAT) scores (WMD: 4.07, 95% CI: -4.14, 12.28), Modified Barthel Index (MBI) scores (WMD: 9.55, 95% CI: 6.37, 12.73), and modified Ashworth Scale (MAS) scores (WMD: -0.28, 95% CI: -0.50, 0.06), with no significant heterogeneity. CONCLUSIONS Upper limb robot-assisted training is superior to conventional training in terms of improving upper limb motor impairment, ability to perform daily living activities, and muscle tone recovery, which supports the application of robots in clinical practice.
Collapse
Affiliation(s)
- Tingting Su
- Department of Rehabilitation MedicineTongxiang First People's HospitalTongxiangZhejiangChina
| | - Mengting Wang
- Department of Rehabilitation MedicineTongxiang First People's HospitalTongxiangZhejiangChina
| | - Zhouyang Chen
- Department of Rehabilitation MedicineTongxiang First People's HospitalTongxiangZhejiangChina
| | - Liang Feng
- Department of Rehabilitation MedicineTongxiang First People's HospitalTongxiangZhejiangChina
| |
Collapse
|
4
|
Garcia GF, Gonçalves RS, Carbone G. A Review of Wrist Rehabilitation Robots and Highlights Needed for New Devices. MACHINES 2024; 12:315. [DOI: 10.3390/machines12050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Various conditions, including traffic accidents, sports injuries, and neurological disorders, can impair human wrist movements, underscoring the importance of effective rehabilitation methods. Robotic devices play a crucial role in this regard, particularly in wrist rehabilitation, given the complexity of the human wrist joint, which encompasses three degrees of freedom: flexion/extension, pronation/supination, and radial/ulnar deviation. This paper provides a comprehensive review of wrist rehabilitation devices, employing a methodological approach based on primary articles sourced from PubMed, ScienceDirect, Scopus, and IEEE, using the keywords “wrist rehabilitation robot” from 2007 onwards. The findings highlight a diverse array of wrist rehabilitation devices, systematically organized in a tabular format for enhanced comprehension. Serving as a valuable resource for researchers, this paper enables comparative analyses of robotic wrist rehabilitation devices across various attributes, offering insights into future advancements. Particularly noteworthy is the integration of serious games with simplified wrist rehabilitation devices, signaling a promising avenue for enhancing rehabilitation outcomes. These insights lay the groundwork for the development of new robotic wrist rehabilitation devices or to make improvements to existing prototypes incorporating a forward-looking approach to improve rehabilitation outcomes.
Collapse
Affiliation(s)
- Gabriella Faina Garcia
- Faculty of Mechanical Engineering, Federal University of Uberlândia, Uberlândia 38400-902, Brazil
| | - Rogério Sales Gonçalves
- Faculty of Mechanical Engineering, Federal University of Uberlândia, Uberlândia 38400-902, Brazil
| | - Giuseppe Carbone
- Department of Mechanical Engineering, Energy and Management, University of Calabria, 87036 Calabria, Italy
| |
Collapse
|
5
|
Huang Q, Jiang X, Jin Y, Wu B, Vigotsky AD, Fan L, Gu P, Tu W, Huang L, Jiang S. Immersive virtual reality-based rehabilitation for subacute stroke: a randomized controlled trial. J Neurol 2024; 271:1256-1266. [PMID: 37947856 PMCID: PMC10896795 DOI: 10.1007/s00415-023-12060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Few effective treatments improve upper extremity (UE) function after stroke. Immersive virtual reality (imVR) is a novel and promising strategy for stroke UE recovery. We assessed the extent to which imVR-based UE rehabilitation can augment conventional treatment and explored changes in brain functional connectivity (FC) that were related to the rehabilitation. METHODS An assessor-blinded, parallel-group randomized controlled trial was performed with 40 subjects randomly assigned to either imVR or Control group (1:1 allocation), each receiving rehabilitation 5 times per week for 3 weeks. Subjects in the imVR received both imVR and conventional rehabilitation, while those in the Control received conventional rehabilitation only. Our primary and secondary outcomes were the Fugl-Meyer assessment's upper extremity subscale (FMA-UE) and the Barthel Index (BI), respectively. Both intention-to-treat (ITT) and per-protocol (PP) analyses were performed to assess the effectiveness of the trial. For both the FMA-UE/BI, a one-way analysis of covariance (ANCOVA) model was used, with the FMA-UE/BI at post-intervention or at follow-up, respectively, as the dependent variable, the two groups as the independent variable, baseline FMA-UE/BI, age, sex, site, time since onset, hypertension and diabetes as covariates. RESULTS Both ITT and PP analyses demonstrated the effectiveness of imVR-based rehabilitation. The FMA-UE score was greater in the imVR compared with the Control at the post-intervention (mean difference: 9.1 (95% CI 1.6, 16.6); P = 0.019) and follow-up (mean difference:11.5 (95% CI 1.9, 21.0); P = 0.020). The results were consistent for BI scores. Moreover, brain FC analysis found that the motor function improvements were associated with a change in degree in ipsilesional premotor cortex and ipsilesional dorsolateral prefrontal cortex immediately following the intervention and in ipsilesional visual region and ipsilesional middle frontal gyrus after the 12-week follow-up. CONCLUSIONS ImVR-based rehabilitation is an effective tool that can improve the recovery of UE functional capabilities of subacute stroke patients when added to standard care. These improvements were associated with distinctive brain changes at two post-stroke timepoints. The study results will benefit future patients with stroke and provide evidence for a promising new method of stroke rehabilitation. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03086889.
Collapse
Affiliation(s)
- Qianqian Huang
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xixi Jiang
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yun Jin
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Bo Wu
- Department of Information, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Andrew D Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, IL, 60208, USA
| | - Linyu Fan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Pengpeng Gu
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Wenzhan Tu
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lejian Huang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Songhe Jiang
- Department of Rehabilitation Medicine, Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
6
|
Yang X, Shi X, Xue X, Deng Z. Efficacy of Robot-Assisted Training on Rehabilitation of Upper Limb Function in Patients With Stroke: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2023; 104:1498-1513. [PMID: 36868494 DOI: 10.1016/j.apmr.2023.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVE To systematically evaluate the effect of robot-assisted training (RAT) on upper limb function recovery in patients with stroke, providing the evidence-based medical basis for the clinical application of RAT. DATA SOURCES We searched online electronic databases up to June 2022, including PubMed, The Cochrane Library, Scopus, Web of Science, EMBASE, WanFang Data, CNKI, and VIP full-text databases. STUDY SELECTION Randomized controlled trials of the effect of RAT on upper extremity functional recovery in patients with stroke. DATA EXTRACTION The Cochrane Collaboration Tool for Assessing the Risk of Bias was used to assess study quality and risk of bias. DATA SYNTHESIS Fourteen randomized controlled trials involving 1275 patients were included for review. Compared with the control group, RAT significantly improved upper limb motor function and daily living ability. The overall differences were statistically significant, Fugl-Meyer Assessment for the Upper Extremity (FMA-UE; standard mean difference=0.69; 95% confidence interval, 0.34, 1.05; P=.0001), modified Barthel Index (standard mean difference=0.95; 95% confidence interval, 0.75, 1.15; P<.00001), whereas the differences in modified Ashworth Scale, FIM, and Wolf Motor Function Test scores were not statistically significant. SUBGROUP ANALYSIS Compared with the control group, the differences between FMA-UE and modified Barthel Index at 4 and 12 weeks of RAT, there were statistically significant, the differences of FMA-UE and modified Ashworth Scale in patients with stroke in the acute and chronic phases were statistically significant. CONCLUSION The present study showed that RAT can significantly enhance the upper limb motor function and activities of daily life in patients with stroke undergoing upper limb rehabilitation.
Collapse
Affiliation(s)
- Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiubo Shi
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Xiali Xue
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China.
| | - Zhongyi Deng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Ju F, Wang Y, Xie B, Mi Y, Zhao M, Cao J. The Use of Sports Rehabilitation Robotics to Assist in the Recovery of Physical Abilities in Elderly Patients with Degenerative Diseases: A Literature Review. Healthcare (Basel) 2023; 11:healthcare11030326. [PMID: 36766901 PMCID: PMC9914201 DOI: 10.3390/healthcare11030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The increase in the number of elderly patients with degenerative diseases has brought additional medical and financial pressures, which are adding to the burden on society. The development of sports rehabilitation robotics (SRR) is becoming increasingly sophisticated at the technical level of its application; however, few studies have analyzed how it works and how effective it is in aiding rehabilitation, and fewer individualized exercise rehabilitation programs have been developed for elderly patients. The purpose of this study was to analyze the working methods and the effects of different types of SRR and then to suggest the feasibility of applying SRR to enhance the physical abilities of elderly patients with degenerative diseases. The researcher's team searched 633 English-language journal articles, which had been published over the past five years, and they selected 38 of them for a narrative literature review. Our summary found the following: (1) The current types of SRR are generally classified as end-effector robots, smart walkers, intelligent robotic rollators, and exoskeleton robots-exoskeleton robots were found to be the most widely used. (2) The current working methods include assistant tools as the main intermediaries-i.e., robots assist patients to participate; patients as the main intermediaries-i.e., patients dominate the assistant tools to participate; and sensors as the intermediaries-i.e., myoelectric-driven robots promote patient participation. (3) Better recovery was perceived for elderly patients when using SRR than is generally achieved through the traditional single-movement recovery methods, especially in strength, balance, endurance, and coordination. However, there was no significant improvement in their speed or agility after using SRR.
Collapse
Affiliation(s)
- Fangyuan Ju
- Department of Physical Education, Yangzhou University, Yangzhou 225012, China
| | - Yujie Wang
- Department of Physical Education, Yangzhou University, Yangzhou 225012, China
| | - Bin Xie
- Department of Physical Education, Yangzhou University, Yangzhou 225012, China
| | - Yunxuan Mi
- Department of Physical Education, Yangzhou University, Yangzhou 225012, China
| | - Mengyun Zhao
- Department of Physical Education, Yangzhou University, Yangzhou 225012, China
| | - Junwei Cao
- Department of Business, Yangzhou University, Yangzhou 225012, China
- Correspondence:
| |
Collapse
|
8
|
Application of Multi-Dimensional Intelligent Visual Quantitative Assessment System to Evaluate Hand Function Rehabilitation in Stroke Patients. Brain Sci 2022; 12:brainsci12121698. [PMID: 36552157 PMCID: PMC9775443 DOI: 10.3390/brainsci12121698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Hand dysfunction is one of the main symptoms of stroke patients, but there is still a lack of accurate hand function assessment systems. This study focused on the application of the multi-dimensional intelligent visual quantitative assessment system (MDIVQAS) in the rehabilitation assessment of hand function in stroke patients and evaluate hand function rehabilitation in stroke patients. Methods: Eighty-two patients with stroke and unilateral hand dysfunction were evaluated by MDIVQAS. Cronbach’s Alpha coefficient was used to assess the internal consistency of MDIVQAS; the F-test is used to assess the differences in MDIVQAS for multiple repeated measures. Spearman’s analysis was used to identify correlations of MDIVQAS with other assessment systems. t-tests were used to identify differences in outcomes assessed with MDIVQAS in patients before and after treatment. p < 0.05 were considered significant. Results: (1) Cronbach’s Alpha coefficient of MDIVQAS in evaluating hand’s function > 0.9. (2) There was no significant difference between the other repeated measurements, except for thumb rotation in MDIVQAS. (3) MDIVQAS had a significant correlation with other assessment systems (r > 0.5, p < 0.01). (4) There were significant differences in the evaluation of hand function in patients before and after treatment using MDIVQAS. Conclusion: The MDIVQAS system has good reliability and validity in the evaluation of stroke hand function, and it can also better evaluate the treatment effect.
Collapse
|