1
|
Clausen FB. Antenatal RHD screening to guide antenatal anti-D immunoprophylaxis in non-immunized D- pregnant women. Immunohematology 2024; 40:15-27. [PMID: 38739027 DOI: 10.2478/immunohematology-2024-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
In pregnancy, D- pregnant women may be at risk of becoming immunized against D when carrying a D+ fetus, which may eventually lead to hemolytic disease of the fetus and newborn. Administrating antenatal and postnatal anti-D immunoglobulin prophylaxis decreases the risk of immunization substantially. Noninvasive fetal RHD genotyping, based on testing cell-free DNA extracted from maternal plasma, offers a reliable tool to predict the fetal RhD phenotype during pregnancy. Used as a screening program, antenatal RHD screening can guide the administration of antenatal prophylaxis in non-immunized D- pregnant women so that unnecessary prophylaxis is avoided in those women who carry a D- fetus. In Europe, antenatal RHD screening programs have been running since 2009, demonstrating high test accuracies and program feasibility. In this review, an overview is provided of current state-of-the-art antenatal RHD screening, which includes discussions on the rationale for its implementation, methodology, detection strategies, and test performance. The performance of antenatal RHD screening in a routine setting is characterized by high accuracy, with a high diagnostic sensitivity of ≥99.9 percent. The result of using antenatal RHD screening is that 97-99 percent of the women who carry a D- fetus avoid unnecessary prophylaxis. As such, this activity contributes to avoiding unnecessary treatment and saves valuable anti-D immunoglobulin, which has a shortage worldwide. The main challenges for a reliable noninvasive fetal RHD genotyping assay are low cell-free DNA levels, the genetics of the Rh blood group system, and choosing an appropriate detection strategy for an admixed population. In many parts of the world, however, the main challenge is to improve the basic care for D- pregnant women.
Collapse
Affiliation(s)
- Frederik B Clausen
- Laboratory of Blood Genetics, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
2
|
Blomme S, Nollet F, Rosseel W, Bogaard N, Devos H, Emmerechts J, Cauwelier B. Routine noninvasive prenatal screening for fetal Rh D in maternal plasma—A 2‐year experience from a single center in Belgium. Transfusion 2022; 62:1103-1109. [DOI: 10.1111/trf.16868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Siska Blomme
- Department of Laboratory Medicine AZ Sint‐Jan Hospitals Brugge‐Oostende Brugge Belgium
| | - Friedel Nollet
- Department of Laboratory Medicine AZ Sint‐Jan Hospitals Brugge‐Oostende Brugge Belgium
| | - Wesley Rosseel
- Department of Laboratory Medicine AZ Sint‐Jan Hospitals Brugge‐Oostende Brugge Belgium
| | - Natalie Bogaard
- Department of Laboratory Medicine AZ Sint‐Jan Hospitals Brugge‐Oostende Brugge Belgium
| | - Helena Devos
- Department of Laboratory Medicine AZ Sint‐Jan Hospitals Brugge‐Oostende Brugge Belgium
| | - Jan Emmerechts
- Department of Laboratory Medicine AZ Sint‐Jan Hospitals Brugge‐Oostende Brugge Belgium
| | - Barbara Cauwelier
- Department of Laboratory Medicine AZ Sint‐Jan Hospitals Brugge‐Oostende Brugge Belgium
| |
Collapse
|
3
|
Dziegiel MH, Krog GR, Hansen AT, Olsen M, Lausen B, Nørgaard LN, Bergholt T, Rieneck K, Clausen FB. Laboratory Monitoring of Mother, Fetus, and Newborn in Hemolytic Disease of Fetus and Newborn. Transfus Med Hemother 2021; 48:306-315. [PMID: 34803574 DOI: 10.1159/000518782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023] Open
Abstract
Background Laboratory monitoring of mother, fetus, and newborn in hemolytic disease of fetus and newborn (HDFN) aims to guide clinicians and the immunized women to focus on the most serious problems of alloimmunization and thus minimize the consequences of HDFN in general and of anti-D in particular. Here, we present the current approach of laboratory screening and testing for prevention and monitoring of HDFN at the Copenhagen University Hospital in Denmark. Summary All pregnant women are typed and screened in the 1st trimester. This serves to identify the RhD-negative pregnant women who at gestational age (GA) of 25 weeks are offered a second screen test and a non-invasive fetal RhD prediction. At GA 29 weeks, and again after delivery, non-immunized RhD-negative women carrying an RhD-positive fetus are offered Rh immunoglobulin. If the 1st trimester screen reveals an alloantibody, antenatal investigation is initiated. This also includes RhD-positive women with alloantibodies. Specificity and titer are determined, the fetal phenotype is predicted by non-invasive genotyping based on cell-free DNA (RhD, K, Rhc, RhC, RhE, ABO), and serial monitoring of titer commences. Based on titers and specificity, monitoring with serial peak systolic velocity measurements in the fetal middle cerebral artery to detect anemia will take place. Intrauterine transfusion is given when fetal anemia is suspected. Monitoring of the newborn by titer and survival of fetal red blood cells by flow cytometry will help predict the length of the recovery of the newborn.
Collapse
Affiliation(s)
- Morten Hanefeld Dziegiel
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Grethe Risum Krog
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne Todsen Hansen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Olsen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lone Nikoline Nørgaard
- Department of Obstetrics, Center of Fetal Medicine and Ultrasound, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bergholt
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Klaus Rieneck
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frederik Banch Clausen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Ahmadi MH, Amirizadeh N, Rabiee M, Rahimi-Sharbaf F, Pourfathollah AA. Noninvasive Fetal Sex Determination by Real-Time PCR and TaqMan Probes. Rep Biochem Mol Biol 2020; 9:315-323. [PMID: 33649725 DOI: 10.29252/rbmb.9.3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Noninvasive fetal sex determination by analyzing Y chromosome-specific sequences is very useful in the management of cases related to sex-linked genetic diseases. The aim of this study was to establish a non-invasive fetal sex determination test using Real-Time PCR and specific probes. Methods The study was a prospective observational cohort study conducted from August 2018 to September 2019. Venous blood samples were collected from 25 Iranian pregnant women at weeks 7 to 25 of gestation. Cell-free DNA (cfDNA) was isolated from the plasma of samples and fetal sex was determined by SRY gene analysis using the Real-Time PCR technique. In the absence of SRY detection, the presence of fetal DNA was investigated using cfDNA treated with BstUI enzyme and PCR for the epigenetic marker RASSF1A. Results Of the total samples analyzed, 48% were male and 52% female. The RASSF1A assay performed on SRY negative cases also confirmed the presence of cell-free fetal DNA. Genotype results were in full agreement with neonate gender, and the accuracy of noninvasive fetal sex determination was 100%. Conclusion Fetal sex determination using the strategy applied in this study is noninvasive and highly accurate and can be exploited in the management of sex-linked genetic diseases.
Collapse
Affiliation(s)
- Mohammad Hossein Ahmadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Maryam Rabiee
- Department of Obstetrics and Gynecology, Shahed University, Tehran, Iran
| | - Fatemeh Rahimi-Sharbaf
- Department of Perinatology, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|