1
|
Palomaki GE, Lambert-Messerlian GM, Fullerton D, Hegde M, Conotte S, Saidel ML, Jani JC. Cell-free DNA-based prenatal screening via rolling circle amplification: Identifying and resolving analytic issues. J Med Screen 2023; 30:168-174. [PMID: 37194254 PMCID: PMC10629251 DOI: 10.1177/09691413231173315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE A rolling circle amplification (RCA) based commercial methodology using cell-free (cf)DNA to screen for common trisomies became available in 2018. Relevant publications documented high detection but with a higher than expected 1% false positive rate. Preliminary evidence suggested assay variability was an issue. A multi-center collaboration was created to explore this further and examine whether subsequent manufacturer changes were effective. METHODS Three academic (four devices) and two commercial (two devices) laboratories provided run date, chromosome 21, 18, and 13 run-specific standard deviations, number of samples run, and reagent lot identifications. Temporal trends and between-site/device consistency were explored. Proportions of run standard deviations exceeding pre-specified caps of 0.4%, 0.4% and 0.6% were computed. RESULTS Overall, 661 RCA runs between April 2019 and July 30, 2022 tested 39,756 samples. In the first 24, subsequent 9, and final 7 months, proportions of capped chromosome 21 runs dropped from 39% to 22% to 6.0%; for chromosome 18, rates were 76%, 36%, and 4.0%. Few chromosome 13 runs were capped using the original 0.60%, but capping at 0.50%, rates were 28%, 16%, and 7.6%. Final rates occurred after reformulated reagents and imaging software modifications were fully implemented across all devices. Revised detection and false positive rates are estimated at 98.4% and 0.3%, respectively. After repeat testing, failure rates may be as low as 0.3%. CONCLUSION Current RCA-based screening performance estimates are equivalent to those reported for other methods, but with a lower test failure rate after repeat testing.
Collapse
Affiliation(s)
- Glenn E Palomaki
- Department of Pathology and Laboratory Medicine, Women & Infants Hospital and Alpert Medical School at Brown University, Providence, RI, USA
| | - Geralyn M Lambert-Messerlian
- Department of Pathology and Laboratory Medicine, Women & Infants Hospital and Alpert Medical School at Brown University, Providence, RI, USA
- Department of Obstetrics and Gynecology, Women & Infants Hospital, Providence, RI, USA
| | - Donna Fullerton
- Department of Clinical Chemistry, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Madhuri Hegde
- Global Laboratory Services, PerkinElmer, Inc, Atlanta, GA, USA
| | - Stéphanie Conotte
- Department of Blood Transfusion, University Hospital Brugmann, Brussels, Belgium
| | | | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
He S, Zhang Q, Chen M, Chen X, Liang B, Lin N, Huang H, Xu L. Analysis of retest reliability for pregnant women undergoing cfDNA testing with a no-call result. Mol Biol Rep 2023; 50:7649-7657. [PMID: 37535243 PMCID: PMC10460704 DOI: 10.1007/s11033-023-08591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/13/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Determining the reasons for unreportable or no-call cell-free DNA (cfDNA) test results has been an ongoing issue, and a consensus on subsequent management is still lacking. This study aimed to explore potential factors related to no-call cfDNA test results and to discuss whether retest results are reliable. METHODS AND RESULTS This was a retrospective study of women with singleton pregnancies undergoing cfDNA testing in 2021. Of the 9871 pregnant patients undergoing cfDNA testing, 111 had a no-call result, and their results were compared to those of 170 control patients. The no-call rate was 1.12% (111/9871), and the primary cause for no-call results was data fluctuation (88.29%, 98/111). Medical conditions were significantly more frequent in the no-call group than in the reportable results group (P < 0.001). After retesting, 107 (107/111, 96.40%) patients had a result, and the false-positive rate (FPR) of retesting was 10.09% (10.09%, 11/109). In addition, placental lesions were more frequent in the no-call group than in the reportable results group (P = 0.037), and 4 patients, all in the no-call group, experienced pregnancy loss. CONCLUSIONS Pregnant women with medical conditions are more likely to have a no-call result. A retest is suggested for patients with a no-call result, but retests have a high FPR. In addition, pregnant women with a no-call result are at increased risk of adverse pregnancy outcomes. In conclusion, more attention should be given to pregnant women for whom a no-call cfDNA result is obtained.
Collapse
Affiliation(s)
- Shuqiong He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Qian Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Bin Liang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Saidel ML, Ananth U, Rose D, Farrell C. Non-Invasive prenatal testing with rolling circle amplification: Real-world clinical experience in a non-molecular laboratory. J Clin Lab Anal 2023; 37:e24870. [PMID: 36972484 PMCID: PMC10156098 DOI: 10.1002/jcla.24870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Non-invasive prenatal testing (NIPT) using cell-free DNA (cfDNA) circulating in maternal blood provides a sensitive and specific screening technique for common fetal aneuploidies, but the high cost and workflow complexity of conventional methodologies limit its widespread implementation. A unique rolling circle amplification methodology reduces cost and complexity, providing a promising alternative for increased global accessibility as a first-tier test. METHODS In this clinical study, 8160 pregnant women were screened on the Vanadis system for trisomies 13, 18, and 21, and positive results were compared to clinical outcomes where available. RESULTS The Vanadis system yielded a 0.07% no-call rate, a 98% overall sensitivity, and a specificity of over 99% based on available outcomes. CONCLUSION The Vanadis system provided a sensitive, specific, and cost-effective cfDNA assay for trisomies 13, 18, and 21, with good performance characteristics and low no-call rate, and it eliminated the need for either next-generation sequencing or polymerase chain reaction amplification.
Collapse
Affiliation(s)
- Matthew L Saidel
- Women's Health USA and Medical Director, Women's Health Connecticut, Rocky Hill, Connecticut, USA
| | - Uma Ananth
- Umagen LLC, Shrewsbury, Massachusetts, USA
| | - Donna Rose
- Women's Health Connecticut Laboratory, Rocky Hill, Connecticut, USA
| | - Cara Farrell
- Ancillary Growth Women's Health Connecticut, Rocky Hill, Connecticut, USA
| |
Collapse
|
4
|
Cao J, Qiao L, Jin J, Zhang S, Chen P, Tang H, Yu Z, Shi J, Wang T, Liang Y. Lipid Metabolism Affects Fetal Fraction and Screen Failures in Non-invasive Prenatal Testing. Front Med (Lausanne) 2022; 8:811385. [PMID: 35096900 PMCID: PMC8790535 DOI: 10.3389/fmed.2021.811385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To assess the association between lipid metabolism and fetal fraction, which is a critical factor in ensuring a highly accurate non-invasive prenatal testing (NIPT), and on the rate of screen failures or “no calls” in NIPT. Methods: A total of 4,514 pregnant women at 12–26 weeks of gestation underwent NIPT sequencing and serum lipid measurements. Univariate analysis and multivariate regression models were used to evaluate the associations of serum lipid concentrations with the fetal fraction and the rate of screen failures. Results: The fetal fraction decreased with increased low-density lipoprotein cholesterol and triglyceride (TG) levels, which were significant factors (standardized coefficient: −0.11). Conversely, high-density lipoprotein cholesterol and the interval between the two tests were positively correlated with the fetal fraction. The median fetal fraction was 10.88% (interquartile range, 8.28–13.89%) and this decreased with TG from 11.56% at ≤1.10 mmol/L to 9.51% at >2.30 mmol/L. Meanwhile, multivariate logistic regression analysis revealed that increased TG levels were independently associated with the risk of screen failures. The rate of screen failures showed an increase with TG levels from 1.20% at ≤1.70 mmol/L to 2.41% at >2.30 mmol/L. Conclusions: The fetal fraction and the rate of screen failures in NIPT are affected by TG levels. Meanwhile, in pregnant women with high TG levels, delaying the time between NIPT blood collections can significantly increase the fetal fraction.
Collapse
Affiliation(s)
- Jun Cao
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Longwei Qiao
- School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Jieyu Jin
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Zhang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Chen
- School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Haoyu Tang
- School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Zheng Yu
- School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Jingye Shi
- School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Ting Wang
- School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Assessment and Clinical Utility of a Non-Next-Generation Sequencing-Based Non-Invasive Prenatal Testing Technology. Curr Issues Mol Biol 2021; 43:958-964. [PMID: 34449543 PMCID: PMC8929113 DOI: 10.3390/cimb43020068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Rolling-circle replication (RCR) is a novel technology that has not been applied to cell-free DNA (cfDNA) testing until recently. Given the cost and simplicity advantages of this technology compared to other platforms currently used in cfDNA analysis, an assessment of RCR in clinical laboratories was performed. Here, we present the first validation study from clinical laboratories utilizing RCR technology. Methods: 831 samples from spontaneously pregnant women carrying a singleton fetus, and 25 synthetic samples, were analyzed for the fetal risk of trisomy 21 (T21), trisomy 18 (T18) and trisomy 13 (T13), by three laboratories on three continents. All the screen-positive pregnancies were provided post-test genetic counseling and confirmatory diagnostic invasive testing (e.g., amniocentesis). The screen-negative pregnancies were routinely evaluated at birth for fetal aneuploidies, using newborn examinations, and any suspected aneuploidies would have been offered diagnostic testing or confirmed with karyotyping. Results: The study found rolling-circle replication to be a highly viable technology for the clinical assessment of fetal aneuploidies, with 100% sensitivity for T21 (95% CI: 82.35-100.00%); 100.00% sensitivity for T18 (71.51-100.00%); and 100.00% sensitivity for T13 analyses (66.37-100.00%). The specificities were >99% for each trisomy (99.7% (99.01-99.97%) for T21; 99.5% (98.62-99.85%) for T18; 99.7% (99.03-99.97%) for T13), along with a first-pass no-call rate of 0.93%. Conclusions: The study showed that using a rolling-circle replication-based cfDNA system for the evaluation of the common aneuploidies would provide greater accuracy and clinical utility compared to conventional biochemical screening, and it would provide comparable results to other reported cfDNA methodologies.
Collapse
|