1
|
Huang YH, Vaez Ghaemi R, Cheon J, Yadav VG, Frostad JM. The mechanical effects of chemical stimuli on neurospheres. Biomech Model Mechanobiol 2024; 23:1319-1329. [PMID: 38613619 DOI: 10.1007/s10237-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/10/2024] [Indexed: 04/15/2024]
Abstract
The formulation of more accurate models to describe tissue mechanics necessitates the availability of tools and instruments that can precisely measure the mechanical response of tissues to physical loads and other stimuli. In this regard, neuroscience has trailed other life sciences owing to the unavailability of representative live tissue models and deficiency of experimentation tools. We previously addressed both challenges by employing a novel instrument called the cantilevered-capillary force apparatus (CCFA) to elucidate the mechanical properties of mouse neurospheres under compressive forces. The neurospheres were derived from murine stem cells, and our study was the first of its kind to investigate the viscoelasticity of living neural tissues in vitro. In the current study, we demonstrate the utility of the CCFA as a broadly applicable tool to evaluate tissue mechanics by quantifying the effect that oxidative stress has on the mechanical properties of neurospheres. We treated mouse neurospheres with non-cytotoxic levels of hydrogen peroxide and subsequently evaluated the storage and loss moduli of the tissues under compression and tension. We observed that the neurospheres exhibit viscoelasticity consistent with neural tissue and show that elastic modulus decreases with increasing size of the neurosphere. Our study yields insights for establishing rheological measurements as biomarkers by laying the groundwork for measurement techniques and showing that the influence of a particular treatment may be misinterpreted if the size dependence is ignored.
Collapse
Affiliation(s)
- Yun-Han Huang
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Roza Vaez Ghaemi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - James Cheon
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Vikramaditya G Yadav
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| | - John M Frostad
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
- Department of Food Science, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Mohseni M, Vahidi B, Azizi H. Computational simulation of applying mechanical vibration to mesenchymal stem cell for mechanical modulation toward bone tissue engineering. Proc Inst Mech Eng H 2023; 237:1377-1389. [PMID: 37982187 DOI: 10.1177/09544119231208223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Evaluation of cell response to mechanical stimuli at in vitro conditions is known as one of the important issues for modulating cell behavior. Mechanical stimuli, including mechanical vibration and oscillatory fluid flow, act as important biophysical signals for the mechanical modulation of stem cells. In the present study, mesenchymal stem cell (MSC) consists of cytoplasm, nucleus, actin, and microtubule. Also, integrin and primary cilium were considered as mechanoreceptors. In this study, the combined effect of vibration and oscillatory fluid flow on the cell and its components were investigated using numerical modeling. The results of the FEM and FSI model showed that the cell response (stress and strain values) at the frequency of 30 H z mechanical vibration has the highest value. The achieved results on shear stress caused by the fluid flow on the cell showed that the cell experiences shear stress in the range of 0 . 1 - 10 Pa . Mechanoreceptors that bind separately to the cell surface, can be highly stimulated by hydrodynamic pressure and, therefore, can play a role in the mechanical modulation of MSCs at in vitro conditions. The results of this research can be effective in future studies to optimize the conditions of mechanical stimuli applied to the cell culture medium and to determine the mechanisms involved in mechanotransduction.
Collapse
Affiliation(s)
- Mohammadreza Mohseni
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamidreza Azizi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Moradkhani M, Vahidi B, Ahmadian B. Finite element study of stem cells under fluid flow for mechanoregulation toward osteochondral cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:84. [PMID: 34236534 PMCID: PMC8266696 DOI: 10.1007/s10856-021-06545-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Investigating the effects of mechanical stimuli on stem cells under in vitro and in vivo conditions is a very important issue to reach better control on cellular responses like growth, proliferation, and differentiation. In this regard, studying the effects of scaffold geometry, steady, and transient fluid flow, as well as influence of different locations of the cells lodged on the scaffold on effective mechanical stimulations of the stem cells are of the main goals of this study. For this purpose, collagen-based scaffolds and implicit surfaces of the pore architecture was used. In this study, computational fluid dynamics and fluid-structure interaction method was used for the computational simulation. The results showed that the scaffold microstructure and the pore architecture had an essential effect on accessibility of the fluid to different portions of the scaffold. This leads to the optimization of shear stress and hydrodynamic pressure in different surfaces of the scaffold for better transportation of oxygen and growth factors as well as for optimized mechanoregulative responses of cell-scaffold interactions. Furthermore, the results indicated that the HP scaffold provides more optimizer surfaces to culture stem cells rather than Gyroid and IWP scaffolds. The results of exerting oscillatory fluid flow into the HP scaffold showed that the whole surface of the HP scaffold expose to the shear stress between 0.1 and 40 mPa and hydrodynamics factors on the scaffold was uniform. The results of this study could be used as an aid for experimentalists to choose optimist fluid flow conditions and suitable situation for cell culture.
Collapse
Affiliation(s)
- Mehdi Moradkhani
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bahram Ahmadian
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Rahimpour E, Vahidi B, Mollahoseini Z. A computational simulation of cyclic stretch of an individual stem cell using a nonlinear model. J Tissue Eng Regen Med 2019; 13:274-282. [PMID: 30556958 DOI: 10.1002/term.2790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 08/31/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
Many experiments have shown that mechanical stimuli like cyclic strains might be helpful in stem cell differentiation. To maximize such differentiations efficiency, it is imperative to detect the cellular mechanical responses to these stimuli. The purpose of this research was to show that a newly presented hyper-viscoelastic model could correctly predict the level of stresses required to obtain a different response from a single mesenchymal stem cell cultured in a fibrin hydrogel block under a 10% cyclic strain at a frequency of 1 Hz, employing finite element method. One of the novelties of the research was the use of a model based on Simo's model. Another important feature of the research was the proposition of a multiscale model considering a layer of integrins. It was concluded that the forces exerted on the biological molecules had the maximum values of 24, 45, and 15 pN for the circumferential, radial, and shear forces, respectively. According to the results, the exerted forces within the cytoskeleton can lead to a different cellular response. These results might be a premise for interpreting events that lead to differentiation of stem cells into fibrochondrocytes. In addition, they can be beneficial in effective design of biological experiments as regards to this issue.
Collapse
Affiliation(s)
- Esmaeel Rahimpour
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zahra Mollahoseini
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Abstract
In this Editor's Review, articles published in 2016 are organized by category and briefly summarized. We aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, the International Society for Mechanical Circulatory Support, the International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We were pleased to publish our second Virtual Issue in April 2016 on "Tissue Engineering in Bone" by Professor Tsuyoshi Takato. Our first was published in 2011 titled "Intra-Aortic Balloon Pumping" by Dr. Ashraf Khir. Other peer-reviewed Special Issues this year included contributions from the 11th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Ündar and selections from the 23rd Congress of the International Society for Rotary Blood Pumps edited by Dr. Bojan Biocina. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|
6
|
Alihemmati Z, Vahidi B, Haghighipour N, Salehi M. Computational simulation of static/cyclic cell stimulations to investigate mechanical modulation of an individual mesenchymal stem cell using confocal microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:494-504. [PMID: 27770921 DOI: 10.1016/j.msec.2016.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/27/2023]
Abstract
It has been found that cells react to mechanical stimuli, while the type and magnitude of these cells are different in various physiological and pathological conditions. These stimuli may affect cell behaviors via mechanotransduction mechanisms. The aim of this study is to evaluate mechanical responses of a mesenchymal stem cell (MSC) to a pressure loading using finite elements method (FEM) to clarify procedures of MSC mechanotransduction. The model is constructed based on an experimental set up in which statics and cyclic compressive loads are implemented on a model constructed from a confocal microscopy 3D image of a stem cell. Both of the applied compressive loads are considered in the physiological loading regimes. Moreover, a viscohyperelastic material model was assumed for the cell through which the finite elements simulation anticipates cell behavior based on strain and stress distributions in its components. As a result, high strain and stress values were captured from the viscohyperelastic model because of fluidic behavior of cytosol when compared with the obtained results through the hyperelastic models. It can be concluded that the generated strain produced by cyclic pressure is almost 8% higher than that caused by the static load and the von Mises stress distribution is significantly increased to about 150kPa through the cyclic loading. In total, the results does not only trace the efficacy of an individual 3D model of MSC using biomechanical experiments of cell modulation, but these results provide knowledge in interpretations from cell geometry. The current study was performed to determine a realistic aspect of cell behavior.
Collapse
Affiliation(s)
- Zakieh Alihemmati
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | | | - Mohammad Salehi
- Department of Mechanical Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|