1
|
Kalka K, Keldenich Z, Carstens H, Walter B, Rauen U, Ruhparwar A, Weymann A, Kamler M, Reiner G, Koch A. Custodiol-MP for ex vivo lung perfusion - A comparison in a porcine model of donation after circulatory determination of death. Int J Artif Organs 2022; 45:162-173. [PMID: 33530837 PMCID: PMC8777315 DOI: 10.1177/0391398821990663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Ex vivo lung perfusion (EVLP) is an established technique to evaluate and eventually recondition lungs prior to transplantation. Custodiol-MP (C-MP) solution is a new solution, designed for clinical machine perfusion, that has been used for kidneys. The aim of this study was to compare the effects of EVLP with Custodiol-MP on lung functional outcomes to the gold standard of EVLP with Steen Solution™. MATERIAL AND METHODS In a porcine EVLP model of DCDD (Donation after Circulatory Determination of Death), lungs were perfused with Steen Solution™ (SS, n = 7) or Custodiol-MP solution supplemented with 55 g/l albumin (C-MP, n = 8). Lungs were stored cold for 4 h in low potassium dextran solution and subsequently perfused ex vivo for 4 h. During EVLP pulmonary gas exchange, activities of lactate dehydrogenase (LDH) and alkaline phosphatase (AP) as well as levels of lactate in the perfusate were recorded hourly. RESULTS Oxygenation capacity differed significantly between groups (averaged over 4 h: SS 274 ± 178 mmHg; C-MP 284 ± 151 mmHg p = 0.025). Lactate dehydrogenase activities and lactate concentrations were significantly lower in Custodiol-MP perfused lungs.In a porcine model of DCDD with 4 h of EVLP the use of modified Custodiol-MP as perfusion solution was feasible. The use of C-MP showed at least comparable lung functional outcomes to the use of Steen SolutionTM. Furthermore C-MP perfusion resulted in significantly lower lactate dehydrogenase activity and lactate levels in the perfusate and higher oxygenation capacity.
Collapse
Affiliation(s)
- Katharina Kalka
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Zoe Keldenich
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Henning Carstens
- Department of Cardiothoracic Surgery,
Center of Cardiology, University Hospital Cologne, Cologne, Nordrhein-Westfalen,
Germany
| | - Björn Walter
- Institut für Physiologische Chemie,
Universitätsklinikum Essen, Essen, Nordrhein-Westfalen, Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie,
Universitätsklinikum Essen, Essen, Nordrhein-Westfalen, Germany
| | - Arjang Ruhparwar
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Alexander Weymann
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Gerald Reiner
- Department of Veterinary Clinical
Sciences, Swine Clinic, Justus-Liebig-University, Giessen, Hessen, Germany
| | - Achim Koch
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| |
Collapse
|
2
|
Tatum R, O'Malley TJ, Bodzin AS, Tchantchaleishvili V. Machine perfusion of donor organs for transplantation. Artif Organs 2021; 45:682-695. [PMID: 33349946 DOI: 10.1111/aor.13894] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
The ever-widening gap between organ supply and demand has resulted in an organ shortage crisis that affects patients all over the world. For decades, static cold storage (SCS) was the gold standard preservation strategy because of its simplicity and cost-effectiveness, but the rising unmet demand for donor organ transplants has prompted investigation into preservation strategies that can expand the available donor pool. Through ex vivo functional assessment of the organ prior to transplant, newer methods to preserve organs such as perfusion-based therapy can potentially expand the available organ pool. This review will explain the physiologic rationale for SCS before exploring the advantages and disadvantages associated with the two broad classes of preservation strategies that have emerged to address the crisis: hypothermic and normothermic machine perfusion. A detailed analysis of how each preservation strategy works will be provided before investigating the current status of clinical data for each preservation strategy for the kidney, liver, pancreas, heart, and lung. For some organs there is robust data to support the use of machine perfusion technologies over SCS, and in others the data are less clear. Nonetheless, machine perfusion technologies represent an exciting frontier in organ preservation research and will remain a crucial component of closing the gap between organ supply and recipient demand.
Collapse
Affiliation(s)
- Robert Tatum
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas J O'Malley
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam S Bodzin
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
3
|
Swaminathan V, Bryant BR, Tchantchaleishvili V, Rajab TK. Bioengineering lungs - current status and future prospects. Expert Opin Biol Ther 2020; 21:465-471. [PMID: 33028138 DOI: 10.1080/14712598.2021.1834534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Once pulmonary disease progresses to end-stage pulmonary disease, treatment options are very limited. An important advance in the field is the development of a bioartificial lung derived from a generic matrix scaffold populated with patients' own cells. Significant progress has already been made in the engineering of bioartificial lungs. AREAS COVERED This review explains how previous and current research contributes to the goal of creating a successful bioartificial lung, and the barriers faced in doing so. We will also highlight some of the design considerations being explored to optimize bioartificial lungs and considerations for clinical translation. EXPERT OPINION While current bioartificial lungs are able to provide short-term gas exchange in large-animal studies, much work is still required to combine the disciplines of cell biology, materials science, and tissue engineering to create such clinically useful and functioning artificial lungs.
Collapse
Affiliation(s)
- Vishal Swaminathan
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Barry R Bryant
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Taufiek Konrad Rajab
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Liu Q, Simioni A, Del Angel Diaz L, Quintini C. Pancreas perfusion preservation: State of the art with future directions. Artif Organs 2020; 44:445-448. [DOI: 10.1111/aor.13644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Qiang Liu
- Transplantation Center Department of Surgery Digestive Disease and Surgery Institute Cleveland Clinic Cleveland OH USA
| | - Andrea Simioni
- Transplantation Center Department of Surgery Digestive Disease and Surgery Institute Cleveland Clinic Cleveland OH USA
| | - Laurent Del Angel Diaz
- Transplantation Center Department of Surgery Digestive Disease and Surgery Institute Cleveland Clinic Cleveland OH USA
| | - Cristiano Quintini
- Transplantation Center Department of Surgery Digestive Disease and Surgery Institute Cleveland Clinic Cleveland OH USA
| |
Collapse
|