1
|
Karimov JH, Miyagi C, Kuroda T, Polakowski AR, Flick CR, Kuban BD, Fukamachi K, Karamlou T, Ahmad M, Najm H. Implantable continuous-flow total artificial heart for newborns and small pediatric patients: First report of working model. JTCVS Tech 2024; 28:124-131. [PMID: 39669321 PMCID: PMC11632331 DOI: 10.1016/j.xjtc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 12/14/2024] Open
Abstract
Objective The need for safe and reliable mechanical circulatory support (MCS) for smaller children with severe heart failure (HF) is well defined. More specifically, in pediatric patients with advanced congenital HF, there is no implantable total artificial heart (TAH) device available for small patients. Herein, we report the development of the infant continuous-flow total artificial heart (I-CFTAH), a fully implantable in infants and newborns. Methods After extensive engineering analysis, we performed an unprecedented effort: reducing the I-CFTAH's displacement volume to be 14% of the adult CFTAH pump while simultaneously decreasing pump diameter (6.2 cm to 2.6 cm) and axial length (9.8 cm to 4.8 cm). Facilitated by these proportional reductions, for the first time, a durable total artificial heart device was successfully fit in the chest of infants and newborns (height of ≥50 cm). Results The functional I-CFTAH prototype demonstrated capability to support stable hemodynamics and desired device performance. The pump flow range (0.5-1.5 L/min) was confirmed in a mock circulatory testing loop. Within the tested flow range, the I-CFTAH can support small patients that could benefit from the intended cardiac output. Conclusions This successful effort demonstrated the feasibility of the miniature continuous-flow total artificial heart, intended for very small patient populations. I-CFTAH showed stable hemodynamics and could, therefore, become one of the few therapeutic options as a bridge to transplantation, aiming to enhance both the quality and duration of life for pediatric patients with advanced HF.
Collapse
Affiliation(s)
- Jamshid H. Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Kaufman Center for Heart Failure, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anthony R. Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christine R. Flick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Barry D. Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Kaufman Center for Heart Failure, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Tara Karamlou
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Munir Ahmad
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Hani Najm
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
2
|
Kuroda T, Miyagi C, Polakowski AR, Flick CR, Kuban BD, Fukamachi K, Karimov JH. Cleveland Clinic Continuous-Flow Total Artificial Heart: Progress Report and Technology Update. ASAIO J 2024; 70:116-123. [PMID: 37851000 PMCID: PMC10842968 DOI: 10.1097/mat.0000000000002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Cleveland Clinic's continuous-flow total artificial heart (CFTAH) is being developed at our institution and has demonstrated system reliability and optimal performance. Based on the results from recent chronic in vivo experiments, CFTAH has been revised, especially to improve biocompatibility. The purpose of this article is to report our progress in developing CFTAH. To improve biocompatibility, the right impeller, the pump housing, and the motor were reviewed for design revision. Updated design features were based on computational fluid dynamics analysis and observations from in vitro and in vivo studies. A new version of CFTAH was created, manufactured, and tested. All hemodynamic and pump-related parameters were observed and found to be within the intended ranges, and the new CFTAH yielded acceptable biocompatibility. Cleveland Clinic's continuous-flow total artificial heart has demonstrated reliable performance, and has shown satisfactory progress in its development.
Collapse
Affiliation(s)
- Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony R. Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine R. Flick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Barry D. Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
- Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland, OH
| | - Jamshid H. Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
- Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland, OH
| |
Collapse
|
3
|
Kuroda T, Miyagi C, Fukamachi K, Karimov JH. Biventricular assist devices and total artificial heart: Strategies and outcomes. Front Cardiovasc Med 2023; 9:972132. [PMID: 36684573 PMCID: PMC9853410 DOI: 10.3389/fcvm.2022.972132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
In contrast to the advanced development of the left ventricular assist device (LVAD) therapy for advanced heart failure, the mechanical circulatory support (MCS) with biventricular assist device (BVAD) and total artificial heart (TAH) options remain challenging. The treatment strategy of BVAD and TAH therapy largely depends on the support duration. For example, an extracorporeal centrifugal pump, typically referred to as a temporary surgical extracorporeal right ventricular assist device, is implanted for the short term with acute right ventricular failure following LVAD implantation. Meanwhile, off-label use of a durable implantable LVAD is a strategy for long-term right ventricular support. Hence, this review focuses on the current treatment strategies and clinical outcomes based on each ventricle support duration. In addition, the issue of heart failure post-heart transplantation (post-HT) is explored. We will discuss MCS therapy options for post-HT recipients.
Collapse
Affiliation(s)
- Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Jamshid H. Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Jamshid H. Karimov,
| |
Collapse
|
4
|
Sakurai H, Fujiwara T, Ohuchi K, Hijikata W, Inoue Y, Maruyama O, Tahara T, Yokota S, Tanaka Y, Takewa Y, Mizuno T, Arai H. Innovative experimental animal models for real-time comparison of antithrombogenicity between two oxygenators using dual extracorporeal circulation circuits and indocyanine green fluorescence imaging. Artif Organs 2023; 47:77-87. [PMID: 35957489 DOI: 10.1111/aor.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Antithrombogenicity of extracorporeal membrane oxygenation (ECMO) devices, particularly oxygenators, is a current problem, with numerous studies and developments underway. However, there has been limited progress in developing methods to accurately compare the antithrombogenicity of oxygenators. Animal experiments are commonly conducted to evaluate the antithrombogenicity of devices; however, it is challenging to maintain a steady experimental environment. We propose an innovative experimental animal model to evaluate different devices in a constant experimental environment in real-time. METHODS This model uses two venous-arterial ECMO circuits attached to one animal (one by jugular vein and carotid artery, one by femoral vein and artery) and real-time assessment of thrombus formation in the oxygenator by indocyanine green (ICG) fluorescence imaging. Comparison studies were conducted using three pigs: one to compare different oxygenators (MERA vs. CAPIOX) (Case 1), and two to compare antithrombotic properties of the oxygenator (QUADROX) when used under different hydrodynamic conditions (continuous flow vs. pulsatile flow) (Cases 2 and 3). RESULTS Thrombi, visualized using ICG imaging, appeared as black dots on a white background in each oxygenator. In Case 1, differences in the site of thrombus formation and rate of thrombus growth were observed in real-time in two oxygenators. In Case 2 and 3, the thrombus region was smaller in pulsatile than in continuous conditions. CONCLUSIONS We devised an innovative experimental animal model for comparison of antithrombogenicity in ECMO circuits. This model enabled simultaneous evaluation of two different ECMO circuits under the same biological conditions and reduced the number of sacrificed experimental animals.
Collapse
Affiliation(s)
- Hironobu Sakurai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuki Fujiwara
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuhiro Ohuchi
- Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Hijikata
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Yusuke Inoue
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Asahikawa, Japan
| | - Osamu Maruyama
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tomoki Tahara
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachie Yokota
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yui Tanaka
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Yoshiaki Takewa
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Asahikawa, Japan
| | - Tomohiro Mizuno
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|