1
|
Deshpande R, Augustine T. Smart transplants: emerging role of nanotechnology and big data in kidney and islet transplantation, a frontier in precision medicine. Front Immunol 2025; 16:1567685. [PMID: 40264762 PMCID: PMC12011751 DOI: 10.3389/fimmu.2025.1567685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Kidney and islet transplantation has revolutionized the management of renal failure and diabetes. Transplantation is considered as excellent therapeutic intervention for most suitable patients. While advancements in the surgical aspects, immunosuppression and outcomes have potentially plateaued, new technologies have developed which could enhance transplantation with benefits to patients and clinical teams alike. The science of nanotechnology and big data advancements are two such technologies, collectively paving the way for smarter transplantation solutions. Nanotechnology offers novel strategies to overcome critical challenges, including organ preservation, ischemia-reperfusion injury and immune modulation. Innovations such as nanoparticle-based drug delivery systems, biocompatible encapsulation technologies for islet transplants, and implantable artificial kidneys are redefining the standards of care. Meanwhile, big data analytics harness vast datasets to optimize donor-recipient matching, refine predictive models for post-transplant outcomes, and personalize therapeutic regimens. Integrating these technologies forms a synergistic framework where nanotechnology enhances therapeutic precision and big data provides actionable insights, enabling clinicians to adopt proactive, patient-specific strategies. By addressing unmet needs and leveraging the combined potential of nanotechnology and big data, this transformative approach promises to improve graft survival, functionality, and overall patient outcomes, marking a paradigm shift in transplantation medicine. These developments will also be accelerated with integration of the rapidly advancing science of artificial intelligence.
Collapse
Affiliation(s)
- Rajkiran Deshpande
- Department of Renal and Pancreas Transplantation and General Surgery, Manchester Royal Infirmary, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Titus Augustine
- Department of Renal and Pancreas Transplantation and General Surgery, Manchester Royal Infirmary, Manchester University Foundation Trust, Manchester, United Kingdom
- Department Faculty of Biology, Medicine and Health, Division of Diabetes, Endocrinology and Gastroenterology, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Mohanto N, Mondal H, Park YJ, Jee JP. Therapeutic delivery of oxygen using artificial oxygen carriers demonstrates the possibility of treating a wide range of diseases. J Nanobiotechnology 2025; 23:25. [PMID: 39827150 PMCID: PMC11742488 DOI: 10.1186/s12951-024-03060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Artificial oxygen carriers have emerged as potential substitutes for red blood cells in situations of major blood loss, including accidents, surgical procedures, trauma, childbirth, stomach ulcers, hemorrhagic shock, and blood vessel ruptures which can lead to sudden reduction in blood volume. The therapeutic delivery of oxygen utilizing artificial oxygen carriers as red blood cell substitutes presents a promising avenue for treating a spectrum of disease models. Apart from that, the recent advancement of artificial oxygen carriers intended to supplant conventional blood transfusions draws significant attention due to the exigencies of warfare and the ongoing challenges posed by the COVID-19 pandemic. However, there is a pressing need to formulate stable, non-toxic, and immunologically inert oxygen carriers. Even though numerous challenges are encountered in the development of artificial oxygen carriers, their applicability extends to various medical treatments, encompassing elective and cardiovascular surgeries, hemorrhagic shock, decompression illness, acute stroke, myocardial infarction, sickle cell crisis, and proficient addressing conditions such as cerebral hypoxia. Therefore, this paper provides an overview of therapeutic oxygen delivery using assorted types of artificial oxygen carriers, including hemoglobin-based, perfluorocarbon-based, stem cell-derived, and oxygen micro/nanobubbles, in the treatment of diverse disease models. Additionally, it discusses the potential side effects and limitations associated with these interventions, while incorporating completed and ongoing research and recent clinical developments. Finally, the prospective solutions and general demands of the perfect artificial oxygen carriers were anticipated to be a reference for subsequent research endeavors.
Collapse
Affiliation(s)
- Nijaya Mohanto
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Himangsu Mondal
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Li S, Chen Y, Cao X, Yang C, Li W, Shen B. The application of nanotechnology in kidney transplantation. Nanomedicine (Lond) 2024; 19:413-429. [PMID: 38275168 DOI: 10.2217/nnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Kidney transplantation is a crucial treatment option for end-stage renal disease patients, but challenges related to graft function, rejection and immunosuppressant side effects persist. This review highlights the potential of nanotechnology in addressing these challenges. Nanotechnology offers innovative solutions to enhance organ preservation, evaluate graft function, mitigate ischemia-reperfusion injury and improve drug delivery for immunosuppressants. The integration of nanotechnology holds promise for improving outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Yiming Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, 200433, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
- Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| |
Collapse
|
4
|
Abstract
Ischemia or hypoxia can lead to pathological changes in the metabolism and function of tissues and then lead to various diseases. Timely and effective blood resuscitation or improvement of hypoxia is very important for the treatment of diseases. However, there is a need to develop stable, nontoxic, and immunologically inert oxygen carriers due to limitations such as blood shortages, different blood types, and the risk of transmitting infections. With the development of various technologies, oxygen carriers based on hemoglobin and perfluorocarbon have been widely studied in recent years. This paper reviews the development and application of hemoglobin and perfluorocarbon oxygen carriers. The design of oxygen carriers was analyzed, and their application as blood substitutes or oxygen carriers in various hypoxic diseases was discussed. Finally, the characteristics and future research of ideal oxygen carriers were prospected to provide reference for follow-up research.
Collapse
Affiliation(s)
- Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Deyuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Kaiyuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|
5
|
Zhang Q, Inagaki NF, Ito T. Recent advances in micro-sized oxygen carriers inspired by red blood cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2223050. [PMID: 37363800 PMCID: PMC10288928 DOI: 10.1080/14686996.2023.2223050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Supplementing sufficient oxygen to cells is always challenging in biomedical engineering fields such as tissue engineering. Originating from the concept of a 'blood substitute', nano-sized artificial oxygen carriers (AOCs) have been studied for a long time for the optimization of the oxygen supplementation and improvement of hypoxia environments in vitro and in vivo. When circulating in our bodies, micro-sized human red blood cells (hRBCs) feature a high oxygen capacity, a unique biconcave shape, biomechanical and rheological properties, and low frictional surfaces, making them efficient natural oxygen carriers. Inspired by hRBCs, recent studies have focused on evolving different AOCs into microparticles more feasibly able to achieve desired architectures and morphologies and to obtain the corresponding advantages. Recent micro-sized AOCs have been developed into additional categories based on their principal oxygen-carrying or oxygen-releasing materials. Various biomaterials such as lipids, proteins, and polymers have also been used to prepare oxygen carriers owing to their rapid oxygen transfer, high oxygen capacity, excellent colloidal stability, biocompatibility, suitable biodegradability, and long storage. In this review, we concentrated on the fabrication techniques, applied biomaterials, and design considerations of micro-sized AOCs to illustrate the advances in their performances. We also compared certain recent micro-sized AOCs with hRBCs where applicable and appropriate. Furthermore, we discussed existing and potential applications of different types of micro-sized AOCs.
Collapse
Affiliation(s)
- Qiming Zhang
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Natsuko F. Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Rother T, Horgby C, Schmalkuche K, Burgmann JM, Nocke F, Jägers J, Schmitz J, Bräsen JH, Cantore M, Zal F, Ferenz KB, Blasczyk R, Figueiredo C. Oxygen carriers affect kidney immunogenicity during ex-vivo machine perfusion. FRONTIERS IN TRANSPLANTATION 2023; 2:1183908. [PMID: 38993849 PMCID: PMC11235266 DOI: 10.3389/frtra.2023.1183908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/29/2023] [Indexed: 07/13/2024]
Abstract
Normothermic ex-vivo machine perfusion provides a powerful tool to improve donor kidney preservation and a route for the delivery of pharmacological or gene therapeutic interventions prior to transplantation. However, perfusion at normothermic temperatures requires adequate tissue oxygenation to meet the physiological metabolic demand. For this purpose, the addition of appropriate oxygen carriers (OCs) to the perfusion solution is essential to ensure a sufficient oxygen supply and reduce the risk for tissue injury due to hypoxia. It is crucial that the selected OCs preserve the integrity and low immunogenicity of the graft. In this study, the effect of two OCs on the organ's integrity and immunogenicity was evaluated. Porcine kidneys were perfused ex-vivo for four hours using perfusion solutions supplemented with red blood cells (RBCs) as conventional OC, perfluorocarbon (PFC)-based OC, or Hemarina-M101 (M101), a lugworm hemoglobin-based OC named HEMO2life®, recently approved in Europe (i.e., CE obtained in October 2022). Perfusions with all OCs led to decreased lactate levels. Additionally, none of the OCs negatively affected renal morphology as determined by histological analyses. Remarkably, all OCs improved the perfusion solution by reducing the expression of pro-inflammatory mediators (IL-6, IL-8, TNFα) and adhesion molecules (ICAM-1) on both transcript and protein level, suggesting a beneficial effect of the OCs in maintaining the low immunogenicity of the graft. Thus, PFC-based OCs and M101 may constitute a promising alternative to RBCs during normothermic ex-vivo kidney perfusion.
Collapse
Affiliation(s)
- Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Carina Horgby
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Katharina Schmalkuche
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Fabian Nocke
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Jägers
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Miriam Cantore
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Franck Zal
- Hemarina SA, Aéropôle Centre, Morlaix, France
| | - Katja B. Ferenz
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- CeNIDE (Center for Nanointegration Duisburg-Essen), University of Duisburg-Essen, Duisburg, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Jaegers J, Haferkamp S, Arnolds O, Moog D, Wrobeln A, Nocke F, Cantore M, Pütz S, Hartwig A, Franzkoch R, Psathaki OE, Jastrow H, Schauerte C, Stoll R, Kirsch M, Ferenz KB. Deciphering the Emulsification Process to Create an Albumin-Perfluorocarbon-(o/w) Nanoemulsion with High Shelf Life and Bioresistivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10351-10361. [PMID: 35969658 PMCID: PMC9435530 DOI: 10.1021/acs.langmuir.1c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
This work aimed at the development of a stable albumin-perfluorocarbon (o/w) emulsion as an artificial oxygen carrier suitable for clinical application. So far, albumin-perfluorocarbon-(o/w) emulsions have been successfully applied in preclinical trials. Cross-linking a variety of different physical and chemical methods for the characterization of an albumin-perfluorocarbon (PFC)-(o/w) emulsion was necessary to gain a deep understanding of its specific emulsification processes during high-pressure homogenization. High-pressure homogenization is simple but incorporates complex physical reactions, with many factors influencing the formation of PFC droplets and their coating. This work describes and interprets the impact of albumin concentration, homogenization pressure, and repeated microfluidizer passages on PFC-droplet formation; its influence on storage stability; and the overcoming of obstacles in preparing stable nanoemulsions. The applied methods comprise dynamic light scattering, static light scattering, cryo- and non-cryo-scanning and transmission electron microscopies, nuclear magnetic resonance spectroscopy, light microscopy, amperometric oxygen measurements, and biochemical methods. The use of this wide range of methods provided a sufficiently comprehensive picture of this polydisperse emulsion. Optimization of PFC-droplet formation by means of temperature and pressure gradients results in an emulsion with improved storage stability (tested up to 5 months) that possibly qualifies for clinical applications. Adaptations in the manufacturing process strikingly changed the physical properties of the emulsion but did not affect its oxygen capacity.
Collapse
Affiliation(s)
- Johannes Jaegers
- University
of Duisburg-Essen, Institute of Physiology, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany
- Department
of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, bygning
1116, 8000 Aarhus
C, Denmark
| | - Sven Haferkamp
- SOLID-CHEM
GmbH, Universitätsstraße
136, 44799 Bochum, Germany
| | - Oliver Arnolds
- Biomolecular
Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Daniel Moog
- Pulveranalyse
Dipl.-Ing. Daniel Moog, Roitzheimer Str. 61, 53879 Euskirchen, Germany
| | - Anna Wrobeln
- University
of Duisburg-Essen, Institute of Physiology, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Fabian Nocke
- University
of Duisburg-Essen, Institute of Physiology, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Miriam Cantore
- University
of Duisburg-Essen, Institute of Physiology, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Stefanie Pütz
- Biomolecular
Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Anne Hartwig
- Physical
Chemistry-innoFSPEC and Potsdam Transfer, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Rico Franzkoch
- CellNanOs
(Center of Cellular Nanoanalytics), iBiOs (Integrated Bioimaging Facility), University of Osnabrück, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Olympia Ekaterini Psathaki
- CellNanOs
(Center of Cellular Nanoanalytics), iBiOs (Integrated Bioimaging Facility), University of Osnabrück, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Holger Jastrow
- Institute
of Anatomy, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, Essen D-45147, Germany
- Institute
for Experimental Immunology and Imaging, Imaging Center Essen, Electron
Microscopy Unit, University of Duisburg-Essen, Hufelandstr. 55, Essen D-45147, Germany
| | | | - Raphael Stoll
- Biomolecular
Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Michael Kirsch
- University
of Duisburg-Essen, Institute of Physiological Chemistry, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Katja Bettina Ferenz
- University
of Duisburg-Essen, Institute of Physiology, University Hospital Essen, Hufelandstraße 55, 45122 Essen, Germany
- CeNIDE (Center for Nanointegration Duisburg-Essen) University of
Duisburg-Essen, Carl-Benz-Strasse
199, 47057 Duisburg, Germany
| |
Collapse
|