1
|
The effect of induced hyperammonaemia on sleep and melanopsin-mediated pupillary light response in patients with liver cirrhosis: A single-blinded randomized crossover trial. PLoS One 2022; 17:e0275067. [PMID: 36170326 PMCID: PMC9518847 DOI: 10.1371/journal.pone.0275067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background & aims Sleep disturbances are related to hepatic encephalopathy and hyperammonaemia in patients with cirrhosis. The circadian rhythm is regulated by light stimulation of the retina via melanopsin-containing ganglion cells. The study aimed to investigate whether induced hyperammonaemia affects the pupillary light response and sleep efficiency in patients with cirrhosis. Methods The study was a single-blinded crossover trial including nine patients with cirrhosis. Sleep was evaluated by Pittsburgh Sleep Quality Index (PSQI) and monitored for twelve nights with wrist accelerometers and sleep diaries. On two experimental days, separated by one week, patients were randomized to ingest either an oral amino acid challenge (AAC) or an isocaloric glucose solution (GS). We measured pupillary light response, capillary ammonia, the Karolinska Sleepiness Scale (KSS), and two neuropsychological tests on both experimental days. Results The patients had poor self-assessed sleep quality. The amino acid challenge led to a significant increase in capillary ammonia and KSS. The time spent in bed sleeping after AAC was longer and with a reduced movement index compared to baseline but not different from GS. We found no difference in the pupillary light response or neuropsychiatric tests when comparing the effect of AAC with GS. Conclusions Patients with cirrhosis had impaired sleep quality. Induced hyperammonaemia led to increased sleepiness but had no acute effect on pupillary light response or the neuropsychiatric tests. Trial registration Registration number: NCT04771104.
Collapse
|
2
|
Pinheiro HM, da Costa RM. Pupillary light reflex as a diagnostic aid from computational viewpoint: A systematic literature review. J Biomed Inform 2021; 117:103757. [PMID: 33826949 DOI: 10.1016/j.jbi.2021.103757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 01/06/2023]
Abstract
This work presents a detailed and complete review of publications on pupillary light reflex (PLR) used to aid diagnoses. These are computational techniques used in the evaluation of pupillometry, as well as their application in computer-aided diagnoses (CAD) of pathologies or physiological conditions that can be studied by observing the movements of miosis and mydriasis of the human pupil. A careful survey was carried out of all studies published over the last 10 years which investigated, electronic devices, recording protocols, image treatment, computational algorithms and the pathologies related to PLR. We present the frontier of existing knowledge regarding methods and techniques used in this field of knowledge, which has been expanding due to the possibility of performing diagnoses with high precision, at a low cost and with a non-invasive method.
Collapse
|
3
|
Ba-Ali S, Brøndsted AE, Andersen HU, Jennum P, Lund-Andersen H. Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy. Acta Ophthalmol 2020; 98:477-484. [PMID: 31943805 DOI: 10.1111/aos.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/20/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE We assessed the function of rod/cones and melanopsin in type 1 (T1DM) and type 2 diabetes mellitus (T2DM) with and without non-proliferative diabetic retinopathy (NPDR). METHODS We performed pupillometry on 22 healthy controls and four diabetic groups: 12 T1DM patients without NPDR and 12 with moderate NPDR, and 16 T2DM patients without NPDR and 12 with moderate NPDR. Monocular stimulations of 20 seconds with red (λ = 633 nm) and blue light (λ = 463 nm) at ~15 log quanta/cm2 /second were performed. The primary outcome was the melanopsin-mediated late redilation phase of postillumination pupillary light response (PIPRL ate ) to blue light. The secondary outcomes were the mixed rod/cone and melanopsin responses, that is maximal pupil constriction and the early redilation phase of PIPR (PIPRE arly ). RESULTS Late redilation phase of PIPR (PIPRL ate ) to blue and red light stimuli was not significantly different between healthy control and the four diabetic groups (n.s.). The maximal pupil contractions to blue light stimulus were significantly reduced in T1DM patients as well as in T2DM patients with NPDR (p ≤ 0.02), whereas for red light stimuli, the maximal pupil constriction was only reduced in T2DM with NPDR (p < 0.01). Early redilation phase of PIPR (PIPRE arly ) to blue and red light stimuli was not significantly different between healthy controls and diabetic patients (n.s.). CONCLUSION Neither the PIPRE arly nor the PIPRL ate was significantly reduced in diabetics with or without NPDR compared to healthy controls. The reduced maximal pupil constrictions in diabetics with NPDR indicate decreased mixed rod/cone and melanopsin responses.
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Poul Jennum
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Centre for Sleep Medicine, Neurophysiology Clinic, Rigshospitalet, Glostrup, Denmark
| | - Henrik Lund-Andersen
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Centre, Gentofte, Denmark
| |
Collapse
|
4
|
Krishnan AK, Jacobson SG, Roman AJ, Iyer BS, Garafalo AV, Héon E, Cideciyan AV. Transient pupillary light reflex in CEP290- or NPHP5-associated Leber congenital amaurosis: Latency as a potential outcome measure of cone function. Vision Res 2020; 168:53-63. [PMID: 32088401 PMCID: PMC7068155 DOI: 10.1016/j.visres.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Mutations in photoreceptor cilium genes CEP290 and NPHP5 cause a form of Leber congenital amaurosis (LCA) which typically lacks rods but retains central cones. The current study evaluated the transient pupillary light reflex (TPLR) as an objective outcome measure to assess efficacy of ongoing and future therapies. Eleven eyes of six patients selected for retained cone function were tested with TPLR using full-field stimuli in the dark-adapted state. Stimuli were red or blue with 1 s duration and spanned a 6-log unit dynamic range. TPLR response amplitude was quantified at fixed times of 0.9 and 2 s after stimulus onset and TPLR latency was defined as the time to reach 0.3 mm constriction. Full-field stimulus testing (FST) and static perimetry were used to correlate subjective perception with objective TPLR parameters. TPLR and FST thresholds with both red and blue stimuli were abnormally elevated in patients to near -1.25 log phot-cd·m-2 consistent with the lack of rods. TPLR latencies were delayed on average but showed some differences among patients. Remnant extrafoveal vision was correlated with faster TPLR latencies. Our results support the use of a short TPLR protocol with full-field red stimuli of 0.7 log phot-cd·m-2 or brighter as an objective and convenient outcome measure of cone function in CEP290- and NPHP5-LCA. The latency parameter of the TPLR would be expected to show a detectable change when an intervention modifies cone sensitivity in the extrafoveal region.
Collapse
Affiliation(s)
- Arun K Krishnan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Alejandro J Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Bhavya S Iyer
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
5
|
Ahmadi H, Lund‐Andersen H, Kolko M, Bach‐Holm D, Alberti M, Ba‐Ali S. Melanopsin-mediated pupillary light reflex and sleep quality in patients with normal tension glaucoma. Acta Ophthalmol 2020; 98:65-73. [PMID: 31062491 DOI: 10.1111/aos.14133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/10/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE The intrinsically photosensitive retinal ganglion cells (ipRGCs) and sleep quality are impaired in patients with primary open-angle glaucoma (POAG). In this study, we investigated whether ipRGCs and sleep quality were also impaired in patients with normal tension glaucoma (NTG). METHODS We performed pupillometry and sleep quality assessment in 15 patients with NTG and 17 healthy age-matched controls. Pupillometry protocol consisted of monocular stimulation with high illuminance (100 lux) red (633 nm, 300 cd/m2 or 15.23 log quanta/cm2 /s) and blue light (463 nm, 332 cd/m2 or 15.27 log quanta/cm2 /s) and binocular pupil measurements. Prior to light stimulation, patients were dark-adapted for 5 min. The late postillumination pupillary response (PIPRL ate ) to blue light was used as marker of ipRGC activity. Sleep quality was assessed by Pittsburgh Sleep Quality Index (PSQI) questionnaire. RESULTS The PIPRL ate to blue light was significantly reduced in patients with NTG compared to healthy subjects (p < 0.001), indicating impairment of the melanopsin-mediated pupillary pathway. There was no significant difference in the response elicited by red light (p = 0.6). Baseline pupil diameter and pupillary constriction amplitude to both red and blue light were reduced in patients with NTG (p < 0.05). The global score in PSQI was not significantly different between healthy controls and patients with NTG, indicating normal sleep quality (p = 0.6). Furthermore, we found no correlation between sleep parameters and pupillary light reflex parameters. CONCLUSION Patients with NTG exhibited reduced ipRGC activity compared to healthy subjects, while no differences were observed in sleep quality.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Henrik Lund‐Andersen
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Miriam Kolko
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Daniella Bach‐Holm
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Mark Alberti
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Shakoor Ba‐Ali
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
6
|
Rukmini AV, Milea D, Gooley JJ. Chromatic Pupillometry Methods for Assessing Photoreceptor Health in Retinal and Optic Nerve Diseases. Front Neurol 2019; 10:76. [PMID: 30809186 PMCID: PMC6379484 DOI: 10.3389/fneur.2019.00076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The pupillary light reflex is mediated by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs), which also receive input from rods and cones. Melanopsin-dependent pupillary light responses are short-wavelength sensitive, have a higher threshold of activation, and are much slower to activate and de-activate compared with rod/cone-mediated responses. Given that rod/cone photoreceptors and melanopsin differ in their response properties, light stimuli can be designed to stimulate preferentially each of the different photoreceptor types, providing a read-out of their function. This has given rise to chromatic pupillometry methods that aim to assess the health of outer retinal photoreceptors and ipRGCs by measuring pupillary responses to blue or red light stimuli. Here, we review different types of chromatic pupillometry protocols that have been tested in patients with retinal or optic nerve disease, including approaches that use short-duration light exposures or continuous exposure to light. Across different protocols, patients with outer retinal disease (e.g., retinitis pigmentosa or Leber congenital amaurosis) show reduced or absent pupillary responses to dim blue-light stimuli used to assess rod function, and reduced responses to moderately-bright red-light stimuli used to assess cone function. By comparison, patients with optic nerve disease (e.g., glaucoma or ischemic optic neuropathy, but not mitochondrial disease) show impaired pupillary responses during continuous exposure to bright blue-light stimuli, and a reduced post-illumination pupillary response after light offset, used to assess melanopsin function. These proof-of-concept studies demonstrate that chromatic pupillometry methods can be used to assess damage to rod/cone photoreceptors and ipRGCs. In future studies, it will be important to determine whether chromatic pupillometry methods can be used for screening and early detection of retinal and optic nerve diseases. Such methods may also prove useful for objectively evaluating the degree of recovery to ipRGC function in blind patients who undergo gene therapy or other treatments to restore vision.
Collapse
Affiliation(s)
- A V Rukmini
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| | - Dan Milea
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology and Visual Sciences Academic Clinical Programme (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore
| | - Joshua J Gooley
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
7
|
Ba-Ali S, Jensen RH, Larsen LS, Lund-Andersen H, Hamann S. The Melanopsin-Mediated Pupillary Light Response Is Not Changed in Patients with Newly Diagnosed Idiopathic Intracranial Hypertension. Neuroophthalmology 2018; 42:65-72. [PMID: 29563950 DOI: 10.1080/01658107.2017.1344251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/07/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022] Open
Abstract
Previously, it has been reported that melanopsin-mediated pupillary light response (PLR), measured with pupillometry, is reduced in patients with idiopathic intracranial hypertension (IIH), indicating the clinical utility of the tool in the diagnosis of IIH. In the current study, the authors aimed to measure the PLR in 13 treatment-naive patients with new-onset IIH and 13 healthy controls. In contrast to the previous report, which was based on patients with longstanding IIH (n = 13), the authors found no significant difference in the melanopsin-mediated PLR (p = 0.48).
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor Højland Jensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark
| | - Line Sofie Larsen
- Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark
| | - Henrik Lund-Andersen
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Ba-Ali S, Lund-Andersen H, Ahmadi H, Brøndsted AE. Effect of Intermittent versus Continuous Light Exposure on Pupillary Light Response, As Evaluated by Pupillometry. Front Neurol 2018; 8:746. [PMID: 29387040 PMCID: PMC5775973 DOI: 10.3389/fneur.2017.00746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Abstract
Objective Continuous and intermittent stimuli with green light affect the pupillary light response (PLR) differently. Since the majority of pupillometric studies use blue and red lights, we investigated the effect of continuous and intermittent stimulations on the PLR using red and blue lights. Methods Seventeen healthy subjects underwent continuous- and intermittent light stimuli, using red (643 nm) and blue light (463 nm). To avoid the influence of pupil size on the amount of light entering the eye, the procedures were repeated with the stimulus–eye in dilated condition. The maximal pupillary constriction and the early redilation phase of post-illumination pupillary response (PIPREarly) represented the mixed response of melanopsin and rod–cone photoreceptors. The late redilation phase of PIPR (PIPRLate) was the marker of melanopsin-containing retinal ganglion cells. Results Intermittent stimuli with blue light elicited significantly larger maximal contraction during dilated condition (P = 0.001), and larger sustained pupillary contraction under dilated as well as undilated condition (P < 0.001) compared to continuous light exposure. Except the PIPREarly during undilated condition, none of the PIPR metrics were significantly different between intermittent and continuous blue light stimuli. Intermittent red light stimuli elicited also a more sustained pupillary contraction regardless of mydriatic instillation (P ≤ 0.02). In addition, intermittent red light exposure resulted in a slightly larger PIPREarly under undilated condition (P = 0.02) and a slightly larger PIPRLate under dilated condition (P = 0.049). Except the PIPRLate to continuous red light stimulus, all PIPR parameters were larger when the light was presented after induction of unilateral mydriasis. Conclusion PLR parameters during and after light exposures depend on both the light stimulation mode and the entrance pupillary size.
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Lund-Andersen
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hamid Ahmadi
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adam Elias Brøndsted
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|