1
|
Van Eijgen J, Van Winckel L, Hanssen H, Kotliar K, Vanassche T, Van Craenenbroeck EM, Cornelissen V, Van Craenenbroeck AH, Jones E, Stalmans I. Retinal vessel analysis to assess microvascular function in the healthy eye: A systematic review on the response to acute physiological and pathological stressors. Surv Ophthalmol 2025; 70:200-214. [PMID: 39592075 DOI: 10.1016/j.survophthal.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
The retina allows noninvasive in vivo assessment of the microcirculation. Autoregulation of the retinal microvasculature meets the changing requirements of local metabolic demand and maintains adequate blood flow. Analysis of the retinal vascular reactivity contributes to the understanding of regulatory physiology and its relationship to the systemic microcirculation. We conducted a literature review on the effect of different acute stimuli onto the retinal vasculature was conducted in accordance with the PRISMA guidelines. A literature search between 1-1-2005 and 17-10-2022 was performed in Medline, Embase, Web of Science and the Cochrane Library. We report the retinal vascular behavior of healthy individuals in response to both physiological and pathological stressors in 106 included articles. We provide ables of methodological characteristics for each stressor. Hypoxia, hypercapnia, high altitude, flicker light stimulation, rise of core temperature, blood pressure lowering, and the condition immediately after endurance exercise associate with larger retinal vessels. Hyperoxia, hypocapnia, blood pressure rise (Bayliss effect), and the condition during isometric exercise associate with smaller retinal vessels. The retinal vasculature is highly reactive to physiological and pathological stressors. This autoregulatory capacity is hypothesized to be a source of biomarkers for vascular health. Dynamic and static retinal vessel analysis are noninvasive methods to assess this (micro)vascular function. Exploring its diagnostic potential and application into clinical practice requires the development of standardized assessment methods, for which some recommendations are made.
Collapse
Affiliation(s)
- Jan Van Eijgen
- Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium; Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
| | - Lien Van Winckel
- Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium.
| | - Henner Hanssen
- Department of Sports, Exercise and Health, Medical Faculty, University of Basel, Basel, Switzerland.
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Campus Jülich, Heinrich-Mussmann-Str. 1, Jülich 52428, Germany.
| | - Thomas Vanassche
- Centre for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.2.28, Universiteitsplein 1, Antwerp 2610, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem 2650, Belgium.
| | - Véronique Cornelissen
- Research Group of Rehabilitation of Internal Disorders, Department of Rehabilitation Sciences, Faculty of Movement and Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | - Amaryllis H Van Craenenbroeck
- Division of Nephrology, University Hospitals UZ leuven, Leuven, Belgium; Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium.
| | - Elisabeth Jones
- Centre for Molecular and Vascular Biology, Herestraat 49, Bus 911, KU, Leuven 3000, Belgium; Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, Netherlands.
| | - Ingeborg Stalmans
- Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium; Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Li J, Kong Y, Wang P, Chen C, Liu J, Li X, Shao Y. Fundus changes in healthy adults after high altitude exposure. Photodiagnosis Photodyn Ther 2025; 53:104542. [PMID: 40031993 DOI: 10.1016/j.pdpdt.2025.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND To quantify the changes of long-term high altitude (HA) exposure of fundus in healthy adults. The aim is to provide a reference for the prevention and treatment of high altitude ophthalmopathy. METHODS 30 eyes of 15 healthy participants exposed to high altitude were recruited in this study. Swept-source optical coherence tomography/Swept-source optical coherence tomography angiography (SS-OCT/SS-OCTA) was used to analyze fundus changes in participants before and after plateau exposure. Fundus metrics included best corrected visual acuity (BCVA), the thickness of the retina (ReT), Inner ReT, Outer ReT, nerve fiber layer thickness (RNFLT), and ganglion cell internal plexiform layer thickness (GCIPLT), vascular density (VD), the size of the perfusion area (PA), choroidal vessel volume (CVV), and choroidal vascularity index (CVI) in all quadrants of the macula. All metrics were analyzed by generalized estimating equations (GEE). RESULTS Compared with baseline data, all participants who worked at high altitude for more than one year showed no change in visual acuity (P > 0.05) and a decreased in ReT, Outer ReT, GCIPLT and VD in all quadrants (P > 0.05). In addition, Inner ReT and RNFLT show an upward trend (P > 0.05). PA was significantly increased in the overall retina, Inner retina, superficial capillary plexus (SCP), and middle capillary plexus (ICP) (P < 0.05). CONCLUSION The systemic adaptive changes due to high altitude exposure may cause varying degrees of structural and functional changes in the fundus. The current findings require large-scale longitudinal studies to obtain more definitive data on this topic.
Collapse
Affiliation(s)
- Jiaxin Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yunzhu Kong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Peiyu Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Chen Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Juping Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
3
|
Soundara Pandi SP, Winter H, Smith MR, Harkin K, Bojdo J. Preclinical Retinal Disease Models: Applications in Drug Development and Translational Research. Pharmaceuticals (Basel) 2025; 18:293. [PMID: 40143072 PMCID: PMC11944893 DOI: 10.3390/ph18030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Retinal models play a pivotal role in translational drug development, bridging preclinical research and therapeutic applications for both ocular and systemic diseases. This review highlights the retina as an ideal organ for studying advanced therapies, thanks to its immune privilege, vascular and neuronal networks, accessibility, and advanced imaging capabilities. Preclinical retinal disease models offer unparalleled insights into inflammation, angiogenesis, fibrosis, and hypoxia, utilizing clinically translatable bioimaging tools like fundoscopy, optical coherence tomography, confocal scanning laser ophthalmoscopy, fluorescein angiography, optokinetic tracking, and electroretinography. These models have driven innovations in anti-inflammatory, anti-angiogenic, and neuroprotective strategies, with broader implications for systemic diseases such as rheumatoid arthritis, Alzheimer's, and fibrosis-related conditions. By emphasizing the integration of the 3Rs principles and novel imaging modalities, this review highlights how retinal research not only enhances therapeutic precision but also minimizes ethical concerns, paving the way for more predictive and human-relevant approaches in drug development.
Collapse
Affiliation(s)
| | - Hanagh Winter
- Medinect Bioservices Ltd., Belfast BT7 1NF, UK; (S.P.S.P.); (H.W.); (M.R.S.); (K.H.)
| | - Madeleine R. Smith
- Medinect Bioservices Ltd., Belfast BT7 1NF, UK; (S.P.S.P.); (H.W.); (M.R.S.); (K.H.)
| | - Kevin Harkin
- Medinect Bioservices Ltd., Belfast BT7 1NF, UK; (S.P.S.P.); (H.W.); (M.R.S.); (K.H.)
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - James Bojdo
- Medinect Bioservices Ltd., Belfast BT7 1NF, UK; (S.P.S.P.); (H.W.); (M.R.S.); (K.H.)
| |
Collapse
|
4
|
Chua J, Tan B, Wong D, Garhöfer G, Liew XW, Popa-Cherecheanu A, Loong Chin CW, Milea D, Li-Hsian Chen C, Schmetterer L. Optical coherence tomography angiography of the retina and choroid in systemic diseases. Prog Retin Eye Res 2024; 103:101292. [PMID: 39218142 DOI: 10.1016/j.preteyeres.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Optical coherence tomography angiography (OCTA) has transformed ocular vascular imaging, revealing microvascular changes linked to various systemic diseases. This review explores its applications in diabetes, hypertension, cardiovascular diseases, and neurodegenerative diseases. While OCTA provides a valuable window into the body's microvasculature, interpreting the findings can be complex. Additionally, challenges exist due to the relative non-specificity of its findings where changes observed in OCTA might not be unique to a specific disease, variations between OCTA machines, the lack of a standardized normative database for comparison, and potential image artifacts. Despite these limitations, OCTA holds immense potential for the future. The review highlights promising advancements like quantitative analysis of OCTA images, integration of artificial intelligence for faster and more accurate interpretation, and multi-modal imaging combining OCTA with other techniques for a more comprehensive characterization of the ocular vasculature. Furthermore, OCTA's potential future role in personalized medicine, enabling tailored treatment plans based on individual OCTA findings, community screening programs for early disease detection, and longitudinal studies tracking disease progression over time is also discussed. In conclusion, OCTA presents a significant opportunity to improve our understanding and management of systemic diseases. Addressing current limitations and pursuing these exciting future directions can solidify OCTA as an indispensable tool for diagnosis, monitoring disease progression, and potentially guiding treatment decisions across various systemic health conditions.
Collapse
Affiliation(s)
- Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Damon Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Xin Wei Liew
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alina Popa-Cherecheanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Emergency University Hospital, Department of Ophthalmology, Bucharest, Romania
| | - Calvin Woon Loong Chin
- Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Dan Milea
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Fondation Ophtalmologique Adolphe De Rothschild, Paris, France
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Fondation Ophtalmologique Adolphe De Rothschild, Paris, France; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Chen VY, Pottenburgh JA, Chen SE, Kim S, Mayo L, Damani A, Cruz M, Park A, Im L, Magder L, Saeedi OJ. Plexus-Specific Retinal Capillary Blood Flow Analysis Using Erythrocyte Mediated Angiography and Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 39302644 PMCID: PMC11421673 DOI: 10.1167/iovs.65.11.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Purpose The purpose of this study was to identify and measure plexus-specific absolute retinal capillary blood flow velocity and acceleration in vivo in both nonhuman primates (NHPs) and humans using erythrocyte mediated angiography (EMA) and optical coherence tomography angiography (OCTA). Methods EMA and OCTA scans centered on the fovea were obtained in 2 NHPs and 11 human subjects. Scans were also obtained in NHP eyes while IOP was experimentally elevated. Erythrocyte velocity and acceleration in retinal arteries, capillaries, and veins were measured and capillaries were categorized based on location within the superficial vascular (SVP), intermediate capillary (ICP), or deep capillary plexus (DCP). Generalized linear mixed models were used to estimate the effects of intraocular pressure (IOP) on capillary blood flow. Results Capillary erythrocyte velocity at baseline IOP was 0.64 ± 0.29 mm/s in NHPs (range of 0.14 to 1.85 mm/s) and 1.55 ± 0.65 mm/s in humans (range of 0.46 to 4.50 mm/s). Mean erythrocyte velocity in the SVP, ICP, and DCP in NHPs was 0.69 ± 0.29 mm/s, 0.53 ± 0.22 mm/s, and 0.63 ± 0.27 mm/s, respectively (P = 0.14 for NHP-1 and P = 0.28 for NHP-2). Mean erythrocyte velocity in the human subjects did not differ significantly among SVP, ICP, and DCP (1.46 ± 0.59 mm/s, 1.58 ± 0.55 mm/s, and 1.59 ± 0.79 mm/s, P = 0.36). In NHPs, every 1 mm Hg increase in IOP was associated with a 0.13 mm/s reduction in arterial velocity, 0.10 mm/s reduction in venous velocity, and 0.01 mm/s reduction in capillary velocity (P < 0.001) when accounting for differences in mean arterial pressure (MAP). Conclusions Blood flow by direct visualization of individual erythrocytes can be quantified within capillary plexuses. Capillary velocity decreased with experimental IOP elevation.
Collapse
Affiliation(s)
- Victoria Y Chen
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | | | - Shih-En Chen
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Sarah Kim
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lakyn Mayo
- University of California San Francisco School of Medicine, San Francisco, California, United States
| | - Aashka Damani
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Marvin Cruz
- University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Ashley Park
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lily Im
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Laurence Magder
- University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Osamah J Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Raghavendra AJ, Damani A, Oechsli S, Magder LS, Liu Z, Hammer DX, Saeedi OJ. Measurement of retinal blood flow precision in the human eye with multimodal adaptive optics imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4625-4641. [PMID: 39346998 PMCID: PMC11427214 DOI: 10.1364/boe.524944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/30/2024] [Indexed: 10/01/2024]
Abstract
Impaired retinal blood flow (RBF) autoregulation plays a key role in the development and progression of several ocular diseases, including glaucoma and diabetic retinopathy. Clinically, reproducible RBF quantitation could significantly improve early diagnosis and disease management. Several non-invasive techniques have been developed but are limited for retinal microvasculature flow measurements due to their low signal-to-noise ratio and poor lateral resolution. In this study, we demonstrate reproducible vessel caliber and retinal blood flow velocity measurements in healthy human volunteers using a high-resolution (spatial and temporal) multimodal adaptive optics system with scanning laser ophthalmoscopy and optical coherence tomography.
Collapse
Affiliation(s)
- Achyut J Raghavendra
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Aashka Damani
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Saige Oechsli
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Laurence S Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Daniel X Hammer
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Osamah J Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
7
|
Gocuk SA, Hadoux X, Catipon C, Cichello E, Kumar H, Jolly JK, van Wijngaarden P, Llewelyn Edwards T, Ayton LN, Sousa DC. Retinal vascular reactivity in carriers of X-linked inherited retinal disease - a study using optical coherence tomography angiography. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1415393. [PMID: 39045093 PMCID: PMC11263797 DOI: 10.3389/fopht.2024.1415393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Purpose Female carriers of X-linked inherited retinal diseases (IRDs) can show highly variable phenotypes and disease progression. Vascular reactivity, a potential disease biomarker, has not been investigated in female IRD carriers. In this study, functional optical coherence tomography angiography (OCT-A) was used to dynamically assess the retinal microvasculature of X-linked IRD carriers. Methods Genetically confirmed female carriers of IRDs (choroideremia or X-linked retinitis pigmentosa), and healthy women were recruited. Macular angiograms (3x3mm, Zeiss Plex Elite 9000) were obtained in 36 eyes of 15 X-linked IRD female carriers and 21 age-matched control women. Two tests were applied to test vascular reactivity: (i) mild hypoxia and (ii) handgrip test, to induce a vasodilatory or vasoconstrictive response, respectively. Changes to vessel density (VD) and vessel length density (VLD) were independently evaluated during each of the tests for both the superficial and deep capillary plexuses. Results In the control group, the superficial and deep VD decreased during the handgrip test (p<0.001 and p=0.037, respectively). Mean superficial VLD also decreased during the handgrip test (p=0.025), while the deep plexus did not change significantly (p=0.108). During hypoxia, VD and VLD increased in the deep plexus (p=0.027 and p=0.052, respectively) but not in the superficial plexus. In carriers, the physiologic vascular responses seen in controls were not observed in either plexus during either test, with no difference in VD or VLD noted (all p>0.05). Conclusions Functional OCT-A is a useful tool to assess dynamic retinal microvascular changes. Subclinical impairment of the physiological vascular responses seen in carriers of X-linked IRDs may serve as a valuable clinical biomarker.
Collapse
Affiliation(s)
- Sena Ayse Gocuk
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Charmaine Catipon
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Elise Cichello
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Jasleen Kaur Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, United Kingdom
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Thomas Llewelyn Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Lauren Nicole Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - David Cordeiro Sousa
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Zhang C, Cheng S, Chen H, Yang J, Chen Y. New findings on retinal microvascular changes in patients with primary COVID-19 infection: a longitudinal study. Front Immunol 2024; 15:1404785. [PMID: 38835770 PMCID: PMC11148381 DOI: 10.3389/fimmu.2024.1404785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Purpose To investigate the longitudinal alterations of retinal microvasculature in patients with primary coronavirus disease 2019 (COVID-19) infection. Methods A cohort of participants, who had never been infected with COVID-19, was recruited between December 2022 and May 2023 at Peking Union Medical College Hospital in Beijing, China. Participants underwent comprehensive ophthalmologic examinations and fundus imaging, which included color fundus photography, autofluorescence photography, swept-source optical coherence tomography (SS-OCT) and SS-OCT angiography (SS-OCTA). If participants were infected with COVID-19 during the study, follow-ups with consistent imaging modality were conducted within one week and two months after recovery from the infection. Results 31 patients (61 eyes), with a mean age of 31.0 ± 7.2 years old, were eligible for this study. All participants contracted mild COVID-19 infection within one month of baseline data collection. The average period was 10.9 ± 2.0 days post-infection for the first follow-up and 61.0 ± 3.5 days for the second follow-up. No clinical retinal microvasculopathy features were observed during the follow-ups. However, SS-OCTA analysis showed a significant increase in macular vessel density (MVD) from 60.76 ± 2.88% at baseline to 61.59 ± 3.72%(p=0.015) at the first follow-up, which subsequently returned to the baseline level of 60.23 ± 3.33% (p=0.162) at the two-month follow-up. The foveal avascular zone (FAZ) remained stable during the follow-ups with areas of 0.339 ± 0.097mm2, 0.342 ± 0.093mm2, and 0.344 ± 0.098mm2 at the baseline, first follow-up (p=0.09) and second follow-up (p=0.052), respectively. Central macular thickness, cube volume and ganglion cell-inner plexiform layer showed a transient decrease at the first follow-up(p<0.001, p=0.039, p=0.002, respectively), and increased to baseline level at the two-month follow-up(p=0.401, p=0.368, p=0.438, respectively). Conclusion Mild COVID-19 infection may temporarily and reversibly impact retinal microvasculature, characterized by a transient increase in retinal blood flow during the early recovery phase, which returns to the pre-infection level two months post-infection.
Collapse
Affiliation(s)
- Chenxi Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shiyu Cheng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huan Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingyuan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Meng L, Chen L, Zhang C, Chen H, Yang J, Wang Y, Zhang W, Cheng S, Zhao Q, Zhao X, Chen Y. Quantitative assessment of retinal vasculature changes in systemic lupus erythematosus using wide-field OCTA and the correlation with disease activity. Front Immunol 2024; 15:1340224. [PMID: 38348025 PMCID: PMC10859513 DOI: 10.3389/fimmu.2024.1340224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose To assess the retinal vasculature changes quantitatively using wide-field optical coherence tomography angiography (OCTA) in systemic lupus erythematosus (SLE), and explore its correlation with systemic clinical features. Design Prospective, cross-sectional, observational study. Participants and controls Patients with SLE who presented to the Ophthalmology Department of Peking Union Medical College Hospital from November 2022 to April 2023 were collected. The subjects were divided into retinopathy and without retinopathy groups. Age and gender-matched healthy subjects were selected as controls. Methods Patients with SLE and control subjects were imaged with 24×20 mm OCTA scans centered on the fovea and 6×6 mm OCTA scans centered on the optic disc. The sub-layers of OCTA images were stratified by the built-in software of the device and then the retinal thickness and vessel density were measured automatically. The characteristics of retinal OCTA parameters of SLE and its correlation with systemic clinical indicators of patients without retinopathy were analyzed. Main outcome measures OCTA parameters, visual acuity, intraocular pressure, and systemic clinical indicators of patients such as disease activity index, autoimmune antibodies, and inflammatory marker levels were collected. Results A total of 102 SLE patients were included, 24 of which had retinopathy, and 78 had unaffected retina. Wide-field OCTA could effectively detect retinal vascular obstruction, non-perfusion area, and morphological abnormalities in patients with lupus retinopathy. SLE patients without retinopathy had significantly higher retinal superficial vessel density (SVD) in foveal (P=0.02), para-foveal temporal (P=0.01), nasal (P=0.01), peripheral foveal temporal (P=0.02), and inferior areas (P=0.02), as well as subregion temporal (P=0.01) and inferior areas (P=0.03) when compared with healthy controls (n=65 eyes from 65 participants). The area under curve (AUC) value of subregion inferior SVD combined parafoveal temporal SVD was up to 0.70. There was a significantly positive correlation between SVD and disease activity in SLE without retinopathy group. Patients with severe activity had the most significant increase in SVD. Conclusion Wide-field OCTA can provide a relatively comprehensive assessment of the retinal vasculature in SLE. In the absence of pathological changes of the retina, the SVD was significantly increased and was positively correlated with the disease activity of SLE.
Collapse
Affiliation(s)
- Lihui Meng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lulu Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxi Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyuan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuelin Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenfei Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiyu Cheng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Gao Y, Zhang Y, Mou K, Liu Y, Chen Q, Man S, Xu H, Zhou J, Wang T, Li Y, Chen Y, Zhang M. Assessment of alterations in the retina and vitreous in pre- and post-COVID-19 patients using swept-source optical coherence tomography and angiography: A comparative study. J Med Virol 2023; 95:e29168. [PMID: 37815403 DOI: 10.1002/jmv.29168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/06/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Ocular manifestations have been well recognized in coronavirus disease 2019 (COVID-19) outbreak. Several studies have detected ocular manifestations in patients after COVID-19. However, little is known about the retinal and vitreal alterations in patients before and after COVID-19 infection. This study aimed to investigate the retinal and vitreal alterations in patients before and after contracting COVID-19 infection using swept-source optical coherence tomography (SS-OCT) and angiography (SS-OCTA). A total of 38 participants (76 eyes) were enrolled and followed-up 1 month after COVID-19 infection. Then, 26 patients (52 eyes) were evaluated 3 months after COVID-19 infection. Compared with the pre-COVID-19 status, patients with 1- and 3-month post-COVID-19 statuses had significant thinning of ganglion cell and inner plexiform layer, thickening of inner nuclear layer, a decrease in the vessel density (VD) of superficial vascular complex, and an increase in the VD of deep vascular complex. Meanwhile, alteration in parameters of foveal avascular zone (all p < 0.05) and hyper-reflective dots in the vitreous of 27 patients (54 eyes) (71.1% vs. pre-COVID-19, 34.2%, p = 0.006) were observed. These findings suggest significantly retinal and vitreal alterations occurred in patients after COVID-19 infection, possibly due to direct or indirect virus-induced injuries. Further longitudinal studies are required to investigate the long-term effects of COVID-19 infection on the human eyes.
Collapse
Affiliation(s)
- Yuzhu Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kefan Mou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yilin Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qing Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shulei Man
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hanyue Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiaming Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yating Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
12
|
Kal M, Płatkowska-Adamska B, Zarębska-Michaluk D, Rzymski P. Reduced Vessel Density and Enlarged Foveal Avascular Zone in the Macula as a Result of Systemic Hypoxia Caused by SARS-CoV-2 Infection. J Pers Med 2023; 13:926. [PMID: 37373915 DOI: 10.3390/jpm13060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with SARS-CoV-2 can lead to various long-term consequences, including those of an ophthalmic nature. This paper reviews the results of optical coherence tomography angiography (OCTA) performed among COVID-19 patients. The review included papers evaluating short- and long-term outcomes following the SARS-CoV-2 infection. Some differentiated the obtained retinal and choroidal vascularization parameters according to gender. Following COVID-19, patients reveal changes in retinal and choroidal vascular parameters based on OCTA, such as reduced vascular density and an increased foveal avascular zone, which can persist for several months. Routine ophthalmic follow-up with OCTA should be considered in patients after SARS-CoV-2 infection to assess the effects of inflammation and systemic hypoxia in COVID-19. Further research is needed to understand whether infection with particular viral variants/subvariants may vary in the risk of effects on retinal and choroidal vascularization and whether and to what extent these risks may also differ in relation to reinfected and vaccinated individuals.
Collapse
Affiliation(s)
- Magdalena Kal
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Ophthalmic Clinic, Voivodeship Hospital, 25-736 Kielce, Poland
| | | | - Dorota Zarębska-Michaluk
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Department of Infectious Disease, Provincial Hospital, 25-317 Kielce, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznań University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
13
|
Van Eijgen J, Heintz A, van der Pluijm C, Delporte M, De Witte D, Molenberghs G, Barbosa-Breda J, Stalmans I. Normal tension glaucoma: A dynamic optical coherence tomography angiography study. Front Med (Lausanne) 2023; 9:1037471. [PMID: 36687434 PMCID: PMC9853195 DOI: 10.3389/fmed.2022.1037471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/16/2022] [Indexed: 01/08/2023] Open
Abstract
Purpose Vascular dysregulation seems to play a role in the pathogenesis of glaucoma, in particular normal tension glaucoma (NTG). The development of optical coherence tomography angiography (OCTA) enabled the measurement of the retinal microvasculature non-invasively and with high repeatability. Nonetheless, only a few studies transformed OCTA into a dynamic examination employing a sympathomimetic stimulus. The goal of this study was to use this dynamic OCTA exam (1) to differentiate healthy individuals from glaucoma patients and (2) to distinguish glaucoma subcategories, NTG and high-tension primary open angle glaucoma (POAG). Methods Retinal vessel density (VD) in NTG patients (n = 16), POAG patients (n = 12), and healthy controls (n = 14) was compared before and during a hand grip test with a hydraulic dynamometer. Results At baseline, mean peripapillary VD was lower in POAG and NTG (42.6 and 48.5%) compared to healthy controls (58.1%; p < 0.001) and higher in NTG compared to POAG (p = 0.024) when corrected for mean arterial pressure (MAP). Peripapillary and macular (superficial and deep) VD differences were found for gender, age, and baseline MAP. No change in VD occurred (pre-/post-stimulus) in any of the groups. Conclusion Retinal VD loss in glaucoma patients was confirmed and the necessity to correct for gender, age and especially MAP was established. Although replication in a larger population is necessary, OCTA might not be the most suitable method to dynamically evaluate the retinal microvasculature.
Collapse
Affiliation(s)
- Jan Van Eijgen
- Department of Neurosciences, Research Group of Ophthalmology, KU Leuven, Leuven, Belgium,Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium
| | - Alexander Heintz
- Department of Neurosciences, Research Group of Ophthalmology, KU Leuven, Leuven, Belgium
| | - Claire van der Pluijm
- Department of Neurosciences, Research Group of Ophthalmology, KU Leuven, Leuven, Belgium
| | - Margaux Delporte
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), KU Leuven, Leuven, Belgium
| | - Dries De Witte
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), KU Leuven, Leuven, Belgium
| | - Geert Molenberghs
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), KU Leuven, Leuven, Belgium
| | - João Barbosa-Breda
- Department of Neurosciences, Research Group of Ophthalmology, KU Leuven, Leuven, Belgium,Department of Surgery and Physiology, Cardiovascular R&D Centre - UnIC@RISE, University of Porto, Porto, Portugal,Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ingeborg Stalmans
- Department of Neurosciences, Research Group of Ophthalmology, KU Leuven, Leuven, Belgium,Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium,*Correspondence: Ingeborg Stalmans,
| |
Collapse
|
14
|
Hommer N, Kallab M, Schlatter A, Howorka K, Werkmeister RM, Schmidl D, Schmetterer L, Garhöfer G. Retinal Oxygen Metabolism in Patients With Type 2 Diabetes and Different Stages of Diabetic Retinopathy. Diabetes 2022; 71:2677-2684. [PMID: 36107468 PMCID: PMC9862478 DOI: 10.2337/db22-0219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
The aim of this cross-sectional study was to assess retinal oxygen metabolism in patients with type 2 diabetes and different stages of nonproliferative diabetic retinopathy (DR) (n = 67) compared with healthy control subjects (n = 20). Thirty-four patients had no DR, 15 had mild DR, and 18 had moderate to severe DR. Retinal oxygen saturation in arteries and veins was measured using the oxygen module of a retinal vessel analyzer. Total retinal blood flow (TRBF) was measured using a custom-built Doppler optical coherence tomography system. Retinal oxygen extraction was calculated from retinal oxygen saturation and TRBF. Arteriovenous difference in oxygen saturation was highest in healthy subjects (34.9 ± 7.5%), followed by patients with no DR (32.5 ± 6.3%) and moderate to severe DR (30.3 ± 6.5%). The lowest values were found in patients with mild DR (27.3 ± 8.0%, P = 0.010 vs. healthy subjects). TRBF tended to be higher in patients with no DR (40.1 ± 9.2 μL/min) and mild DR (41.8 ± 15.0 μL/min) than in healthy subjects (37.2 ± 5.7 μL/min) and patients with moderate to severe DR (34.6 ± 10.4 μL/min). Retinal oxygen extraction was the highest in healthy subjects (2.24 ± 0.57 μL O2/min), followed by patients with no DR (2.14 ± 0.6 μL O2/min), mild DR (1.90 ± 0.77 μL O2/min), and moderate to severe DR (1.78 ± 0.57 μL O2/min, P = 0.040 vs. healthy subjects). These results indicate that retinal oxygen metabolism is altered in patients with type 2 diabetes. Furthermore, retinal oxygen extraction decreases with increasing severity of DR.
Collapse
Affiliation(s)
- Nikolaus Hommer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martin Kallab
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andreas Schlatter
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Vienna Institute for Research in Ocular Surgery, Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria
| | - Kinga Howorka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Singapore Eye Research Institute-Nanyang Technical University Advanced Ocular Engineering (STANCE), Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Matei N, Leahy S, Blair NP, Burford J, Rahimi M, Shahidi M. Retinal Vascular Physiology Biomarkers in a 5XFAD Mouse Model of Alzheimer's Disease. Cells 2022; 11:2413. [PMID: 35954257 PMCID: PMC9368483 DOI: 10.3390/cells11152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that affects the brain and retina and lacks reliable biomarkers for early diagnosis. As amyloid beta (Aβ) manifestations emerge prior to clinical symptoms and plaques of amyloid may cause vascular damage, identification of retinal vascular biomarkers may improve knowledge of AD pathophysiology and potentially serve as therapeutic targets. The purpose of the current study was to test the hypothesis that retinal hemodynamic and oxygen metrics are altered in 5XFAD mice. METHODS Thirty-two male mice were evaluated at 3 months of age: sixteen 5XFAD transgenic and sixteen wild-type mice. Spectral-domain optical coherence tomography, vascular oxygen tension, and blood flow imaging were performed in one eye of each mouse. After imaging, the imaged and fellow retinal tissues were submitted for histological sectioning and amyloid protein analysis, respectively. Protein analysis was also performed on the brain tissues. RESULTS Retinal physiological changes in venous diameter and blood velocity, arterial and venous oxygen contents, coupled with anatomical alterations in the thickness of retinal cell layers were detected in 5XFAD mice. Moreover, an increase in Aβ42 levels in both the retina and brain tissues was observed in 5XFAD mice. Significant changes in retinal oxygen delivery, metabolism, or extraction fraction were not detected. Based on compiled data from both groups, arterial oxygen content was inversely related to venous blood velocity and nerve fiber/ganglion cell layer thickness. CONCLUSIONS Concurrent alterations in retinal hemodynamic and oxygen metrics, thickness, and tissue Aβ42 protein levels in 5XFAD mice at 3 months of age corresponded to previously reported findings in human AD. Overall, these results suggest that this mouse model can be utilized for studying pathophysiology of AD and evaluating potential therapies.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sophie Leahy
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Norman P. Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James Burford
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mansour Rahimi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Baker J, Safarzadeh MA, Incognito AV, Jendzjowsky NG, Foster GE, Bird JD, Raj SR, Day TA, Rickards CA, Zubieta-DeUrioste N, Alim U, Wilson RJA. Functional optical coherence tomography at altitude: retinal microvascular perfusion and retinal thickness at 3,800 meters. J Appl Physiol (1985) 2022; 133:534-545. [PMID: 35771223 DOI: 10.1152/japplphysiol.00132.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral hypoxia is a serious consequence of several cardiorespiratory illnesses. Measuring the retinal microvasculature at high altitude provides a surrogate for cerebral microvasculature, offering potential insight into cerebral hypoxia in critical illness. Additionally, while sex-specific differences in cardiovascular diseases are strongly supported, few have focused on differences in ocular blood flow. We evaluated the retinal microvasculature in males (n=11) and females (n=7) using functional optical coherence tomography at baseline (1,130m) (Day 0), following rapid ascent (Day 2) and prolonged exposure (Day 9) to high altitude (3,800m). Retinal vascular perfusion density (rVPD; an index of total blood supply), retinal thickness (RT; reflecting vascular and neural tissue volume) and arterial blood were acquired. As a group, rVPD increased on Day 2 vs. Day 0 (p<0.001) and was inversely related to PaO2 (R2=0.45; p=0.006). By Day 9, rVPD recovered to baseline, but was significantly lower in males vs. females (p=0.007). RT was not different on Day 2 vs. Day 0 (p>0.99) but was reduced by Day 9 relative to Day 0 and Day 2 (p<0.001). RT changes relative to Day 0 were inversely related to changes in PaO2 on Day 2 (R2=0.6; p=0.001) and Day 9 (R2=0.4; p=0.02). RT did not differ between sexes. These data suggest differential time course and regulation of the retina during rapid ascent and prolonged exposure to high altitude and are the first to demonstrate sex-specific differences in rVPD at high altitude. The ability to assess intact microvasculature contiguous with the brain has widespread research and clinical applications.
Collapse
Affiliation(s)
- Jacquie Baker
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Mohammad Amin Safarzadeh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony V Incognito
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas G Jendzjowsky
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States
| | - Glen Edward Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Jordan D Bird
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Satish R Raj
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Natalia Zubieta-DeUrioste
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,High Altitude Pulmonary and Pathology Institute (HAPPI - IPPA), La Paz, Bolivia
| | - Usman Alim
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|