1
|
Di Patria L, Annibalini G, Morrone A, Ferri L, Saltarelli R, Galluzzi L, Diotallevi A, Bocconcelli M, Donati MA, Barone R, Guerrini R, Jaeken J, Stocchi V, Barbieri E. Defective IGF-1 prohormone N-glycosylation and reduced IGF-1 receptor signaling activation in congenital disorders of glycosylation. Cell Mol Life Sci 2022; 79:150. [PMID: 35211808 PMCID: PMC8873121 DOI: 10.1007/s00018-022-04180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
The insulin-like growth factor-1 (IGF-1) signaling pathway is crucial for the regulation of growth and development. The correct processing of the IGF-1Ea prohormone (proIGF-1Ea) and the IGF-1 receptor (IGF-1R) peptide precursor requires proper N-glycosylation. Deficiencies of N-linked glycosylation lead to a clinically heterogeneous group of inherited diseases called Congenital Disorders of Glycosylation (CDG). The impact of N-glycosylation defects on IGF-1/IGF-1R signaling components is largely unknown. In this study, using dermal fibroblasts from patients with different CDG [PMM2-CDG (n = 7); ALG3-CDG (n = 2); ALG8-CDG (n = 1); GMPPB-CDG (n = 1)], we analyzed the glycosylation pattern of the proIGF-1Ea, IGF-1 secretion efficiency and IGF-1R signaling activity. ALG3-CDG, ALG8-CDG, GMPPB-CDG and some PMM2-CDG fibroblasts showed hypoglycosylation of the proIGF-1Ea and lower IGF-1 secretion when compared with control (CTR). Lower IGF-1 serum concentration was observed in ALG3-CDG, ALG8-CDG and in some patients with PMM2-CDG, supporting our in vitro data. Furthermore, reduced IGF-1R expression level was observed in ALG3-CDG, ALG8-CDG and in some PMM2-CDG fibroblasts. IGF-1-induced IGF-1R activation was lower in most PMM2-CDG fibroblasts and was associated with decreased ERK1/2 phosphorylation as compared to CTR. In general, CDG fibroblasts showed a slight upregulation of Endoplasmic Reticulum (ER) stress genes compared with CTR, uncovering mild ER stress in CDG cells. ER-stress-related gene expression negatively correlated with fibroblasts IGF-1 secretion. This study provides new evidence of a direct link between N-glycosylation defects found in CDG and the impairment of IGF-1/IGF-1R signaling components. Further studies are warranted to determine the clinical consequences of reduced systemic IGF-1 availability and local activity in patients with CDG.
Collapse
Affiliation(s)
- Laura Di Patria
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy.
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Lorenzo Ferri
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Matteo Bocconcelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Maria Alice Donati
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Reseach Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renzo Guerrini
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Jaak Jaeken
- Center for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, Roma, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy.,IIM, Interuniversity Institute of Myology, Perugia, Italy
| |
Collapse
|
2
|
Hwa V, Fujimoto M, Zhu G, Gao W, Foley C, Kumbaji M, Rosenfeld RG. Genetic causes of growth hormone insensitivity beyond GHR. Rev Endocr Metab Disord 2021; 22:43-58. [PMID: 33029712 PMCID: PMC7979432 DOI: 10.1007/s11154-020-09603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Masanobu Fujimoto
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Gaohui Zhu
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China
| | - Wen Gao
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Corinne Foley
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Meenasri Kumbaji
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Lu X, Arbab AAI, Zhang Z, Fan Y, Han Z, Gao Q, Sun Y, Yang Z. Comparative Transcriptomic Analysis of the Pituitary Gland between Cattle Breeds Differing in Growth: Yunling Cattle and Leiqiong Cattle. Animals (Basel) 2020; 10:E1271. [PMID: 32722439 PMCID: PMC7460210 DOI: 10.3390/ani10081271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis hormones regulate the growth and development of ruminants, and the pituitary gland plays a decisive role in this process. In order to identify pivotal genes in the pituitary gland that could affect the growth of cattle by regulating the secretion of hormones, we detected the content of six HPT hormones related to growth in the plasma of two cattle breeds (Yunling and Leiqiong cattle, both also known as the zebu cattle) with great differences in growth and compared the transcriptome data of their pituitary glands. Our study found that the contents of GH, IGF, TSH, thyroxine, triiodothyronine, and insulin were significantly different between the two breeds, which was the main cause of the difference in growth; 175 genes were identified as differentially expressed genes (DEGs). Functional association analyses revealed that DEGs were mainly involved in the process of transcription and signal transduction. Combining the enrichment analysis and protein interaction analysis, eight DEGs were predicted to control the growth of cattle by affecting the expression of growth-related hormones in the pituitary gland. In summary, our results suggested that SLC38A1, SLC38A3, DGKH, GNB4, GNAQ, ESR1, NPY, and GAL are candidates in the pituitary gland for regulating the growth of Yunling and Leiqiong cattle by regulating the secretion of growth-related hormones. This study may help researchers further understand the growth mechanisms and improve the artificial selection of zebu cattle.
Collapse
Affiliation(s)
- Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Qisong Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| |
Collapse
|