1
|
Wu J, Hu H, Li X. Spinal neuron-glial crosstalk and ion channel dysregulation in diabetic neuropathic pain. Front Immunol 2025; 16:1480534. [PMID: 40264787 PMCID: PMC12011621 DOI: 10.3389/fimmu.2025.1480534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Diabetic neuropathic pain (DNP) is one of the most prevalent complications of diabetes, characterized by a high global prevalence and a substantial affected population with limited effective therapeutic options. Although DNP is closely associated with hyperglycemia, an increasing body of research suggests that elevated blood glucose levels are not the sole inducers of DNP. The pathogenesis of DNP is intricate, involving the release of inflammatory mediators, alterations in synaptic plasticity, demyelination of nerve fibers, and ectopic impulse generation, yet the precise mechanisms remain to be elucidated. The spinal dorsal horn coordinates dynamic interactions between peripheral and central pain pathways, wherein dorsal horn neurons, microglia, and astrocytes synergize with Schwann cell-derived signals to process nociceptive information flow. Abnormally activated neurons can alter signal transduction by modifying the local microenvironment, compromising myelin integrity, and diminishing trophic support, leading to neuronal sensitization and an amplifying effect on peripheral pain signals, which in turn triggers neuropathic pain. Ion channels play a pivotal role in signal conduction, with the modulation of sodium, potassium, and calcium channels being particularly crucial for the regulation of pain signals. In light of the rising incidence of diabetes and the current scarcity of effective DNP treatments, a thorough investigation into the interactions between neurons and glial cells, especially the mechanisms of ion channel function in DNP, is imperative for identifying potential drug targets, developing novel therapeutic strategies, and thereby enhancing the prospects for DNP management.
Collapse
Affiliation(s)
- Jie Wu
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| | - Haijun Hu
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
PharmGKB summary: lamotrigine pathway, pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 2020; 30:81-90. [PMID: 32187155 DOI: 10.1097/fpc.0000000000000397] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Yan X, Liu J, Zhang Z, Li W, Sun S, Zhao J, Dong X, Qian J, Sun H. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 2016; 32:169-180. [PMID: 27864646 DOI: 10.1007/s10103-016-2099-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca2+] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca2+) stores. Blockade of Ca2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca2+-ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengping Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenhao Li
- Cadet Brigade, Fourth Military Medical University, Xi'an, 710032, China
| | - Siguo Sun
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Jian Zhao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Xin Dong
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Jixian Qian
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China.
| | - Honghui Sun
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
4
|
Motoi H, Okanishi T, Kanai S, Yokota T, Yamazoe T, Nishimura M, Fujimoto A, Yamamoto T, Enoki H. Wolf-Hirschhorn (4p-) syndrome with West syndrome. EPILEPSY & BEHAVIOR CASE REPORTS 2016; 6:39-41. [PMID: 27504263 PMCID: PMC4969236 DOI: 10.1016/j.ebcr.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 11/17/2022]
Abstract
Wolf-Hirschhorn syndrome (WHS) is a chromosome disorder (4p-syndrome) which is characterized by craniofacial features and epileptic seizures. Here, we report a case of WHS with West syndrome, in whom the seizures were refractory to several antiepileptic drugs but were responsive to the addition of lamotrigine. The patient had epileptic spasms at age seven months. The interictal electroencephalogram was hypsarrhythmic. After adding lamotrigine, seizures decreased remarkably, and spasms disappeared. We have identified and described the very rare case of a girl with WHS who also developed West syndrome. In this case, adding lamotrigine to her medications effectively treated the spasms.
Collapse
Affiliation(s)
- Hirotaka Motoi
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Tohru Okanishi
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Sotaro Kanai
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Takuya Yokota
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Tomohiro Yamazoe
- Department of Epilepsy Surgery, Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Mitsuyo Nishimura
- Laboratory of Neurophysiology, Seirei-Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Ayataka Fujimoto
- Department of Epilepsy Surgery, Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Takamichi Yamamoto
- Department of Epilepsy Surgery, Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Hideo Enoki
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
5
|
Li Y, Yan X, Liu J, Li L, Hu X, Sun H, Tian J. Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. Neurochem Int 2014; 75:96-104. [PMID: 24937769 DOI: 10.1016/j.neuint.2014.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/18/2014] [Accepted: 06/07/2014] [Indexed: 11/30/2022]
Abstract
Although pulsed electromagnetic field (PEMF) exposure has been reported to promote neuronal differentiation, the mechanism is still unclear. Here, we aimed to examine the effects of PEMF exposure on brain-derived neurotrophic factor (Bdnf) mRNA expression and the correlation between the intracellular free calcium concentration ([Ca(2+)]i) and Bdnf mRNA expression in cultured dorsal root ganglion neurons (DRGNs). Exposure to 50Hz and 1mT PEMF for 2h increased the level of [Ca(2+)]i and Bdnf mRNA expression, which was found to be mediated by increased [Ca(2+)]i from Ca(2+) influx through L-type voltage-gated calcium channels (VGCCs). However, calcium mobilization was not involved in the increased [Ca(2+)]i and BDNF expression, indicating that calcium influx was one of the key factors responding to PEMF exposure. Moreover, PD098059, an extracellular signal-regulated kinase (Erk) inhibitor, strongly inhibited PEMF-dependant Erk1/2 activation and BDNF expression, indicating that Erk activation is required for PEMF-induced upregulation of BDNF expression. These findings indicated that PEMF exposure increased BDNF expression in DRGNs by activating Ca(2+)- and Erk-dependent signaling pathways.
Collapse
Affiliation(s)
- Yuan Li
- Second Clinical Medical College, Southern Medical University, Guangzhou 510280, PR China
| | - Xiaodong Yan
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ling Li
- Department of Geriatrics, Shaanxi Provincial TCM Hospital, Xi'an 710032, PR China
| | - Xinghua Hu
- Department of Endocrinology, Shaanxi Provincial TCM Hospital, Xi'an 710032, PR China
| | - Honghui Sun
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China.
| | - Jing Tian
- Second Clinical Medical College, Southern Medical University, Guangzhou 510280, PR China.
| |
Collapse
|
6
|
Electrical Stimulation Induces Calcium-Dependent Neurite Outgrowth and Immediate Early Genes Expressions of Dorsal Root Ganglion Neurons. Neurochem Res 2013; 39:129-41. [DOI: 10.1007/s11064-013-1197-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
|