1
|
Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23:254. [PMID: 37891636 PMCID: PMC10604988 DOI: 10.1186/s12935-023-03080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS), is an old system with new fundamental roles in cancer biology which influences cell growth, migration, death, and metastasis. RAAS signaling enhances cell proliferation in malignancy directly and indirectly by affecting tumor cells and modulating angiogenesis. Cancer development may be influenced by the balance between the ACE/Ang II/AT1R and the ACE2/Ang 1-7/Mas receptor pathways. The interactions between Ang II/AT1R and Ang I/AT2R as well as Ang1-7/Mas and alamandine/MrgD receptors in the RAAS pathway can significantly impact the development of cancer. Ang I/AT2R, Ang1-7/Mas, and alamandine/MrgD interactions can have anticancer effects while Ang II/AT1R interactions can be involved in the development of cancer. Evidence suggests that inhibitors of the RAAS, which are conventionally used to treat cardiovascular diseases, may be beneficial in cancer therapies.Herein, we aim to provide a thorough description of the elements of RAAS and their molecular play in cancer. Alongside this, the role of RAAS components in sex-dependent cancers as well as GI cancers will be discussed with the hope of enlightening new venues for adjuvant cancer treatment.
Collapse
Affiliation(s)
- Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Pang Z, Launonen H, Korpela R, Vapaatalo H. Local aldosterone synthesis in the large intestine of mouse: An ex vivo incubation study. J Int Med Res 2022; 50:3000605221105163. [PMID: 35748030 PMCID: PMC9248050 DOI: 10.1177/03000605221105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective To investigate the regulation of local aldosterone synthesis by physiological
stimulants in the murine gut. Methods Male mice were fed for 14 days with normal, high (1.6%) or low (0.01%) sodium
diets. Tissue liver receptor homolog-1 and aldosterone in the colon and
caecum were detected using an enzyme-linked immunosorbent assay (ELISA).
Released corticosterone and aldosterone in tissue incubation experiments
after stimulation with angiotensin II (Ang II) and dibutyryl-cAMP (DBA; the
second messenger of adrenocorticotropic hormone) were assayed using an
ELISA. Tissue aldosterone synthase (CYP11B2) protein levels were measured
using an ELISA and Western blots. Results In incubated colon tissues, aldosterone synthase levels were increased by a
low-sodium diet; and by Ang II and DBA in the normal diet group. Release of
aldosterone into the incubation buffer was increased from the colon by a
low-sodium diet and decreased by a high-sodium diet in parallel with changes
in aldosterone synthase levels. In mice fed a normal diet, colon incubation
with both Ang II and DBA increased the release of aldosterone as well as its
precursor corticosterone. Conclusion Local aldosterone synthesis in the large intestine is stimulated by a
low-sodium diet, dibutyryl-cAMP and Ang II similar to the adrenal
glands.
Collapse
Affiliation(s)
- Zan Pang
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanna Launonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Korpela
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Human Microbiome Research Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Zizzo MG, Cicio A, Corrao F, Lentini L, Serio R. Aging modifies receptor expression but not muscular contractile response to angiotensin II in rat jejunum. J Physiol Biochem 2022; 78:753-762. [PMID: 35394564 PMCID: PMC9684288 DOI: 10.1007/s13105-022-00892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 12/03/2022]
Abstract
The involvement of renin-angiotensin system in the modulation of gut motility and age-related changes in mRNA expression of angiotensin (Ang II) receptors (ATR) are well accepted. We aimed to characterize, in vitro, the contractile responses induced by Ang II, in jejunum from young (3–6 weeks old) and old rats (≥ 1 year old), to evaluate possible functional differences associated to changes in receptor expression. Mechanical responses to Ang II were examined in vitro as changes in isometric tension. ATR expression was assessed by qRT-PCR. Ang II induced a contractile effect, antagonized by losartan, AT1R antagonist, and increased by PD123319, AT2R antagonist, as well by neural blocker ω-conotoxin and by nitric oxide (NO) synthase inhibitor. No difference in the response was observed between young and old groups. AT1 receptor-mediated contractile response was decreased by U-73122, phospholipase C (PLC) inhibitor; or 2-aminoethoxy-diphenylborate (2-APB), inositol triphosphate (IP3) receptor inhibitor; or nifedipine, l-type calcium channel blocker. Age-related changes in the expression of both AT1 receptor subtypes, AT1a and AT1b, and of AT2 receptors were detected. In conclusion, Ang II modulates the spontaneous contractility of rat jejunum via postjunctional AT1 receptors, involving Ca2+ mobilization from intracellular stores, via PLC/IP3 pathway, and Ca2+ influx from extracellular space, via l-type channels. Prejunctional AT2 receptors would counteract AT1 receptor effects, via NO synthesis. The observed age-related differences in the expression of all AT receptor subtypes are not reflected in the muscular contractile response to Ang II.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed. 16, 90128, Palermo, Italy.
- ATeN (Advanced Technologies Network) Center, University of Palermo, Viale delle Scienze, ed.18, 90128, Palermo, Italy.
| | - Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Federica Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Laura Lentini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed. 16, 90128, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed. 16, 90128, Palermo, Italy
| |
Collapse
|
4
|
Zizzo MG, Cicio A, Raimondo S, Alessandro R, Serio R. Age-related differences of γ-aminobutyric acid (GABA)ergic transmission in human colonic smooth muscle. Neurogastroenterol Motil 2022; 34:e14248. [PMID: 34432349 PMCID: PMC9285353 DOI: 10.1111/nmo.14248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/10/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Enteric neurons undergo to functional changes during aging. We investigated the possible age-associated differences in enteric γ-aminobutyric acid (GABA)ergic transmission evaluating function and distribution of GABAergic receptors in human colon. METHODS Mechanical responses to GABA and GABA receptor agonists on slow phasic contractions were examined in vitro as changes in isometric tension in colonic muscle strips from young (<65 years old) and aged patients (>65 years old). GABAergic receptor expression was assessed by quantitative RT-PCR. KEY RESULTS In both preparations GABA induced an excitatory effect, consisting in an increase in the basal tone, antagonized by the GABAA receptor antagonist, bicuculline, and potentiated by phaclofen, GABAB receptor antagonist.Tetrodotoxin (TTX) and atropine-sensitive contractile responses to GABA and GABAA receptor agonist, muscimol, were more pronounced in old compared to young subjects. Baclofen, GABAB receptor agonist, induced a TTX-sensitive reduction of the amplitude of the spontaneous. Nω-nitro-l-arginine methyl ester (L-NAME), nitric oxide (NO) synthase inhibitor abolished the inhibitory responses in old preparations, but a residual responses persisted in young preparations, which in turn was abolished by suramin, purinergic receptor antagonist. α3-GABAA receptor subunit expression tends to change in an age-dependent manner. CONCLUSIONS AND INFERENCES Our results reveal age-related differences in GABAergic transmission in human colon. At all the age tested GABA regulates muscular contractility modulating the activity of the intrinsic neurons. Activation of GABAA receptor, through acetylcholine release, induces contraction, which increases in amplitude with age. GABAB receptor activation leads to neural release of NO and purines, being a loss of purinergic-component in aged group.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoViale delle Scienze,ed 16Palermo90128Italy,ATeN (Advanced Technologies Network) CenterUniversity of PalermoViale delle Scienze, ed 18Palermo90128Italy
| | - Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoViale delle Scienze,ed 16Palermo90128Italy
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D)University of PalermoSection of Biology and GeneticsPalermo90133Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D)University of PalermoSection of Biology and GeneticsPalermo90133Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoViale delle Scienze,ed 16Palermo90128Italy
| |
Collapse
|
5
|
da Silva ACA, Severo JS, Dos Santos BLB, Mendes PHM, Nobre LMS, de Oliveira AP, Ferreira FCS, Medeiros JVR, Lima-Junior RC, Havt A, Palheta-Junior RC, Dos Santos AA, Tolentino M. Moderate Physical Exercise Activates ATR 2 Receptors, Improving Inflammation and Oxidative Stress in the Duodenum of 2K1C Hypertensive Rats. Front Physiol 2021; 12:734038. [PMID: 34777003 PMCID: PMC8588860 DOI: 10.3389/fphys.2021.734038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: In addition to the cardiovascular and renal systems, the gastrointestinal tract also contains angiotensin ATR1a, ATR1b, and ATR2. We previously observed that the 2Kidney-1Clip hypertension model elicits physical exercise and gastrointestinal dysmotility, which is prevented by renin-angiotensin system blockers. Here, we investigate the effect of physical exercise on inflammation, stress biomarkers, and angiotensin II receptors in the duodenum of 2K1C rats. Methods: Arterial hypertension was induced by the 2K1C surgical model. The rats were allocated in Sham, 2K1C, or 2K1C+Exercise groups. One week after surgery, they were submitted to a physical exercise protocol (running 5x/week, 60min/day). Next, we assessed their intestinal contractility, cytokine levels (TNF-α, IL-1β, and IL-6), oxidative stress levels (MPO, GSH, MDA, and SOD), and the gene expression of angiotensin receptors (ATR1A, ATR1B, and ATR2). Results: In comparison with the Sham group, the 2K1C arterial hypertension decreased (p<0.05) the intestinal contractility. In comparison with 2K1C, the 2K1C+Exercise group exhibited lower (p<0.05) MPO activity (22.04±5.90 vs. 78.95±18.09 UMPO/mg tissue) and higher (p<0.05) GSH concentrations in intestinal tissues (67.63±7.85 vs. 31.85±5.90mg NPSH/mg tissue). The 2K1C+Exercise group showed lower (p<0.05) cytokine levels in the intestine than 2K1C rats. In comparison with the Sham group, the 2K1C+Exercise rats showed higher (p<0.05) gene expression of ATR2 in the duodenum. Conclusion: 2K-1C hypertension elicits an oxidative stress and inflammation process in the duodenum. Physical exercise modulates the expression twice as much of ATR2 receptors, suggesting possible anti-inflammatory and antioxidant effects induced by exercise.
Collapse
Affiliation(s)
- Alda Cássia Alves da Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil.,Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil
| | - Juliana Soares Severo
- Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil.,Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, Brazil
| | - Brenda Lois Barros Dos Santos
- Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil
| | - Pedro Henrique Moraes Mendes
- Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil
| | - Lívia Maria Soares Nobre
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Jand Venes Rolim Medeiros
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil.,Graduate Program in Biotechnology, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Roberto Cesar Lima-Junior
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Alexandre Havt
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Moisés Tolentino
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil.,Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, Brazil.,Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
6
|
Mica Can Alleviate TNBS-Induced Colitis in Mice by Reducing Angiotensin II and IL-17A and Increasing Angiotensin-Converting Enzyme 2, Angiotensin 1-7, and IL-10. Mediators Inflamm 2021; 2020:3070345. [PMID: 33100902 PMCID: PMC7569463 DOI: 10.1155/2020/3070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/18/2020] [Accepted: 10/01/2020] [Indexed: 11/28/2022] Open
Abstract
Aim To explore the treatment effect of mica on 2,4,6-trinitrobenzenesulfonic acid solution- (TNBS-) induced colitis in mice. Materials and Methods Thirty male BALB/C mice were randomly divided into the control group, the TNBS group, and the mica group. Control mice were treated with saline solution. Experimental colitis was induced by TNBS (250 mg/kg/d) in the TNBS group and the mica group. After modeling, the mica group was treated with mica (180 mg/kg/d) for 3 days, while the TNBS group continued the treatment with TNBS. All solutions were injected intrarectally. During treatment, body weight and mice activity were monitored daily. After treatment, the colon tissues of mice were collected; angiotensin II (Ang II), angiotensin-converting enzyme 2 (ACE2), angiotensin 1-7 (Ang (1-7)), IL-17A, and IL-10 expression was analyzed by ELISA and immunohistochemistry. Results Food intake, activity, and body weight gradually decreased in the TNBS group compared to the control group and the mica group (all P < 0.05). Also, black stool adhesion in the anus and thin and bloody stool were observed in the TNBS group, but not in the other two groups. Moreover, the expression of Ang II, ACE2, Ang (1-7), IL-17A, and IL-10 in the TNBS group increased compared to that in the control group. Compared to the TNBS group, ACE2, Ang (1-7), and IL-10 in the mica group increased, while Ang II and IL-17A decreased (all P < 0.05). Conclusion Mica can alleviate TNBS-induced colitis in mice by regulating the inflammation process; it reduces Ang II and IL-17A and increases ACE2, IL-10, and Ang (1-7).
Collapse
|
7
|
Interaction between the Renin-Angiotensin System and Enteric Neurotransmission Contributes to Colonic Dysmotility in the TNBS-Induced Model of Colitis. Int J Mol Sci 2021; 22:ijms22094836. [PMID: 34063607 PMCID: PMC8125095 DOI: 10.3390/ijms22094836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Angiotensin II (Ang II) regulates colon contraction, acting not only directly on smooth muscle but also indirectly, interfering with myenteric neuromodulation mediated by the activation of AT1 /AT2 receptors. In this article, we aimed to explore which mediators and cells were involved in Ang II-mediated colonic contraction in the TNBS-induced rat model of colitis. The contractile responses to Ang II were evaluated in distinct regions of the colon of control animals or animals with colitis in the absence and presence of different antagonists/inhibitors. Endogenous levels of Ang II in the colon were assessed by ELISA and the number of AT1/AT2 receptors by qPCR. Ang II caused AT1 receptor-mediated colonic contraction that was markedly decreased along the colons of TNBS-induced rats, consistent with reduced AT1 mRNA expression. However, the effect mediated by Ang II is much more intricate, involving (in addition to smooth muscle cells and nerve terminals) ICC and EGC, which communicate by releasing ACh and NO in a complex mechanism that changes colitis, unveiling new therapeutic targets.
Collapse
|
8
|
Zizzo MG, Bellanca A, Amato A, Serio R. Opposite effects of dopamine on the mechanical activity of circular and longitudinal muscle of human colon. Neurogastroenterol Motil 2020; 32:e13811. [PMID: 32012410 DOI: 10.1111/nmo.13811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Because dopamine (DA) has gained increasing evidence as modulator of gut motility, we aimed to characterize dopaminergic response in human colon, evaluating function and distribution of dopamine receptors in circular vs longitudinal muscle strips. METHODS Mechanical responses to DA and dopaminergic agonists on slow phasic contractions and on basal tone were examined in vitro as changes in isometric tension. RT-PCR was used to reveal the distribution of dopaminergic receptors. KEY RESULTS In spontaneous active circular muscle, DA induced an increase in the amplitude of slow phasic contractions and of the basal tone, via activation of D1-like receptors. DA contractile responses were insensitive to neural blockers or to atropine and inhibited by phospholipase C (PLC) pathway inhibitors. In precontracted circular muscle strips, DA, at the higher concentrations tested, caused a relaxant response via activation of D2-like receptors. In the longitudinal muscle, DA caused only muscular relaxation due to activation of D2-like receptors. DA relaxant responses were insensitive to neural blockers or to nitric oxide synthase inhibitor and reduced by a wide-spectrum K+ channel blockers. Transcripts encoding for all the dopaminergic receptor subtypes was observed in both circular and longitudinal preparations. CONCLUSIONS AND INFERENCES Dopamine is able to modulate contractile activity of the human colon. In the circular muscle layer, DA induces mainly muscular contraction activating non-neural D1-like receptors, coupled to PLC/IP3 pathway. In the longitudinal muscle layer, DA induces muscular relaxation acting on non-neural D2-like receptors leading to the increase in K+ conductance.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,ATeN (Advanced Technologies Network) Center, University of Palermo, Palermo, Italy
| | - Annalisa Bellanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Zizzo MG, Caldara G, Bellanca A, Nuzzo D, Di Carlo M, Serio R. PD123319, angiotensin II type II receptor antagonist, inhibits oxidative stress and inflammation in 2, 4-dinitrobenzene sulfonic acid-induced colitis in rat and ameliorates colonic contractility. Inflammopharmacology 2019; 28:187-199. [PMID: 31321575 DOI: 10.1007/s10787-019-00619-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/29/2019] [Indexed: 02/08/2023]
Abstract
Angiotensin II, the main effector of renin angiotensin system, plays an important role in the inflammatory process and most of its effects are mediated through the AT1 receptor activation. However, the knowledge about the AT2 receptor involvement in this process is still evolving. We previously found that in an experimental model of colitis, AT2 receptor activation can contribute to the impairment of the muscle contractility in vitro in the course of inflammation. Here, we investigated the potential alleviating effects of the in vivo treatment of PD123319 (1-[[4-(Dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7- tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate), AT2 receptor antagonist, in 2,4-dinitrobenzene sulfonic acid (DNBS)-induced rat model of colitis. The effects of i.p PD123319 (0.3, 3 and 10 mg/kg) administration to rats subjected to intra-rectal DNBS instillation were investigated. The study revealed that the colon injury and the inflammatory signs were ameliorated by PD123319 when visualized by the histopathological examination. The colon shortening, myeloperoxidase activity, and colonic expression of IL-1β, IL-6 and iNOS were downregulated in a dose-dependent manner in DNBS-induced colitis rats treated with PD123319 and the anti-oxidant defense machinery was also improved. The mechanism of these beneficial effects was found in the ability of PD123319 to inhibit NF-κB activation induced by DNBS. The colonic contractility in inflamed tissues was also improved by PD123319 treatment. In conclusion, our data have demonstrated previously that undescribed proinflammatory effects for the AT2 receptors in DNBS-induced colitis in rats in which they are mediated likely by NF-κB activation and reactive oxygen species generation. Moreover, when the inflammatory process is mitigated by the AT2 receptor antagonist treatment, the smooth muscle is able to recover its functionality.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128, Palermo, Italy. .,ATeN (Advanced Technologies Network) Center, Viale delle Scienze, 90128, Palermo, Italy.
| | | | - Annalisa Bellanca
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, 90128, Palermo, Italy
| | - Domenico Nuzzo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146, Palermo, Italy
| | - Marta Di Carlo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| |
Collapse
|
10
|
Saskin A, Alfares A, Bernard C, Blumenkrantz M, Braverman N, Gupta I, Brosnihan KB, Antignac C, Gubler MC, Morinière V, De Bie I, Bitzan M. Renal tubular dysgenesis and microcolon, a novel association. Report of three cases. Eur J Med Genet 2018; 62:254-258. [PMID: 30071301 DOI: 10.1016/j.ejmg.2018.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/16/2018] [Accepted: 07/28/2018] [Indexed: 11/17/2022]
Abstract
Renal tubular dysgenesis (RTD) is a developmental abnormality of the nephron characterized by fetal anuria, oligohydramnios, and severe postnatal hypotension. Genetic forms have an autosomal recessive inheritance and are caused by mutations in genes encoding key components of the renin-angiotensin pathway. We report three patients from two unrelated families with RTD due to pathogenic variants of the angiotensin-converting enzyme (ACE) gene, in whom RTD was associated with microcolon. We also detail key variations of the renin-angiotensin system in one of these infants. The severe intestinal developmental abnormality culminating in microcolon and early terminal ileum perforation/necrotizing enterocolitis is a novel finding not previously associated with RTD, which points to a role of the renin-angiotensin system in gut development.
Collapse
Affiliation(s)
- Avi Saskin
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ahmed Alfares
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Chantal Bernard
- Department of Pediatric Pathology and Cytogenetics, McGill University Health Centre, Montreal, QC, Canada
| | - Miriam Blumenkrantz
- Department of Pediatric Pathology and Cytogenetics, McGill University Health Centre, Montreal, QC, Canada
| | - Nancy Braverman
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Indra Gupta
- Division of Nephrology, Department of Pediatrics, McGill University Health Centre, Montreal, QC, Canada
| | - K Bridget Brosnihan
- Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | - Isabelle De Bie
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Martin Bitzan
- Division of Nephrology, Department of Pediatrics, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
11
|
Zizzo MG, Auteri M, Amato A, Caldara G, Nuzzo D, Di Carlo M, Serio R. Angiotensin II type II receptors and colonic dysmotility in 2,4-dinitrofluorobenzenesulfonic acid-induced colitis in rats. Neurogastroenterol Motil 2017; 29. [PMID: 28160390 DOI: 10.1111/nmo.13019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Angiotensin II (Ang II), the main peptide of the renin-angiotensin system (RAS), has been suggested to be involved in inflammatory bowel diseases. Since RAS has emerged as gut motility regulator, and dysmotility is associated with intestinal inflammation, our objective was to investigate in rat 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis the functionality of RAS and its contribution to colonic motor alterations. METHODS The effects of Ang II on the longitudinal colonic muscular contractility of control and DNBS-treated rats were characterized in vitro. Transcripts encoding for Ang II receptors were investigated by RT-PCR. KEY RESULTS Inflamed preparations showed a longitudinal muscle marked hypocontractility. Angiotensin II caused contractile effects in both preparations, but the responses in DNBS preparations were reduced compared to controls. In both preparations, Losartan, AT1 receptor antagonist, reduced Ang II effects. PD123319, AT2 receptor antagonist, enhanced Ang II responses only in DNBS rats, as well as Nω -Nitro-L-arginine (L-NNA), nitric oxide (NO) synthase inhibitor, or tetrodotoxin (TTX), neural toxin. The co-administration of PD123319 and TTX or L-NNA produced no additive effects. PD123319 per se improved colonic contractility in inflamed tissues. The effect was reduced in the presence of L-NNA or TTX. All Ang II receptor subtypes were expressed in both preparations. CONCLUSIONS & INFERENCES AT1 receptors mediate Ang II contractile responses in rat colon. During inflammation a recruitment of Ang II AT2 receptors would counteract AT1 -contractile activity. A tonic activation of AT2 receptors would contribute to the general reduction in muscle contractility during experimental inflammation. A role for enteric neurons and NO is also suggested.
Collapse
Affiliation(s)
- M G Zizzo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Laboratorio di Fisiologia generale, Università di Palermo, Palermo, Italy
| | - M Auteri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Laboratorio di Fisiologia generale, Università di Palermo, Palermo, Italy
| | - A Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Laboratorio di Fisiologia generale, Università di Palermo, Palermo, Italy
| | - G Caldara
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Laboratorio di Fisiologia generale, Università di Palermo, Palermo, Italy
| | - D Nuzzo
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR, Palermo, Italy
| | - M Di Carlo
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR, Palermo, Italy
| | - R Serio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Laboratorio di Fisiologia generale, Università di Palermo, Palermo, Italy
| |
Collapse
|
12
|
Condorelli RA, La Vignera S, Giacone F, Iacoviello L, Mongioì LM, Li Volti G, Barbagallo I, Avola R, Calogero AE. Nicotine Effects and Receptor Expression on Human Spermatozoa: Possible Neuroendocrine Mechanism. Front Physiol 2017; 8:177. [PMID: 28400736 PMCID: PMC5368220 DOI: 10.3389/fphys.2017.00177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/07/2017] [Indexed: 11/30/2022] Open
Abstract
The aim of this experimental study was to investigate the mechanism by which nicotine (NIC) alters spermatozoa and to evaluate the expression of nicotinic receptors (nAChR) subunits in human spermatozoa. We analyzed 30 healthy normozoospermic men. Spermatozoa were incubated with NIC 100 ng/ml and the nAChR antagonist, hexamethonium (HEX) (0, 100, 1,000, 10,000 ng/ml) for 3 and 24 h. The following sperm parameters evaluated: (a) progressive motility; (b) mitochondrial membrane potential (MMP); (c) chromatin compactness; (d) externalization of phosphatidylserine (PS); (e) late apoptosis; (f) viability; (g) DNA fragmentation; (h) degree of lipid peroxidation (LP) by flow cytometry; (i) nAChR subunits expression by quantitative Real Time PCR and (j) protein expression evaluation by Western blot analysis. HEX fully antagonized the effects of NIC both after 3 and 24 h of incubation with significant improvement (p < 0.05) of sperm progressive motility, MMP, abnormal chromatin compactness, PS externalization, late apoptosis and DNA fragmentation, already at the concentration of HEX 100 ng/ml. The degree of LP increased after incubation with NIC in raw semen but this effect was fully antagonized (p < 0.05) by HEX after 3 and 24 h of incubation. Finally, 8 nAChR subunits mRNA (α1, α3, α4, α6, α7, β2, β4, and δ) were found expressed in all samples examined, but only α7 subunit is translated, making an homomer receptor, in non-smokers subjects. The effects of NIC on sperm function are mediated by interaction with a specific nicotinic receptor. The presence of nAChR subunits suggests the presence of a neuroendocrine mechanism on human spermatozoa.
Collapse
Affiliation(s)
- Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania Catania, Italy
| | - Filippo Giacone
- Department of Clinical and Experimental Medicine, University of Catania Catania, Italy
| | - Linda Iacoviello
- Department of Clinical and Experimental Medicine, University of Catania Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical Sciences and Biotechnology, University of Catania Catania, Italy
| | | | - Roberto Avola
- Department of Biomedical Sciences and Biotechnology, University of Catania Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania Catania, Italy
| |
Collapse
|
13
|
Patten GS, Abeywardena MY. Effects of Antihypertensive Agents on Intestinal Contractility in the Spontaneously Hypertensive Rat: Angiotensin Receptor System Downregulation by Losartan. J Pharmacol Exp Ther 2017; 360:260-266. [PMID: 27903643 PMCID: PMC5267511 DOI: 10.1124/jpet.116.237586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/21/2016] [Indexed: 12/23/2022] Open
Abstract
Hypertension is an inflammatory condition controlled by the renin angiotensin system and is linked to kidney disease, diabetes mellitus, and recently to dysfunction of the gut. The aim of this study was to determine what effect antihypertensive drug treatments may have on intestinal function of the spontaneously hypertensive rat (SHR). In the first experiment, SHRs were treated with enalapril, hydralazine, or with no treatment as a control. In the second experiment, SHRs were treated with losartan or with no treatment as a control. All drug treatments led to significant lowering of blood pressure after 16 weeks. At termination, intact tissue sections of the ileum and colon were induced to contract ex vivo by KCl; electrical stimulation; and agonists carbachol, angiotensin II, and prostaglandin E2 (PGE2). There were no differences in ileal or colonic contractility due to hydralazine or enalapril compared with no-treatment SHR control. However, for the ileum, the losartan group responded significantly more to KCl and carbachol while responding less to angiotensin II, with no difference for PGE2 compared with the no-treatment SHR control. In contrast, the colon responded similarly to KCl, electrical stimulation, and PGE2 but responded significantly less to angiotensin II. These results demonstrate that the ileum responds differently (with KCl and carbachol as agonists) to the colon after losartan treatment, whereas there is a reduced contractile response in both the ileum and colon following losartan treatment. Although there are few well documented major contraindications for angiotensin receptor blockers, the modulation of gut contractility by losartan may have wider implications for bowel health.
Collapse
|