1
|
Ren Z, Tang S, Wang J, Lv S, Zheng K, Xu Y, Li K. Bioactive Glasses: Advancing Skin Tissue Repair through Multifunctional Mechanisms and Innovations. Biomater Res 2025; 29:0134. [PMID: 39844865 PMCID: PMC11751205 DOI: 10.34133/bmr.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
As a complex and dynamically regulated process, wound healing is collaboratively carried out by multiple types of cells. However, the precise mechanisms by which these cells contribute to immune regulation are not yet fully understood. Although research on bone regeneration has been quite extensive, the application of bioactive glass (BG) in skin tissue repair remains still relatively underexplored. The review focuses on the principles and the latest progress of using BGs for skin tissue repair, highlighting BGs' special performance requirements, including biological activity, biocompatibility, biodegradability, and antibacterial properties, emphasizing their potential for skin tissue repair. In addition, BGs play a substantial role in regulating various inflammatory cells (neutrophils, macrophages, mast cells, etc.) and tissue repair cells [fibroblasts, vascular endothelial cells, mesenchymal stem cells (MSCs), etc.] involved in wound healing. The review also covers recent developments in composite materials incorporating BGs, demonstrating their ability to promote angiogenesis, inhibit wound biofilms, and improve inflammatory responses in chronic wounds. Furthermore, BGs have shown effectiveness in promoting epithelial regeneration and collagen deposition in burn wounds as well as their applications in scar management and post-tumor resection wound care. Finally, we summarize our views on challenges and directions in the emerging field of BGs for skin tissue regeneration research in the future.
Collapse
Affiliation(s)
- Zhiyang Ren
- Department of Burn and Plastic Surgery, The First Affiliated Hospital ofSoochow University, Soochow University, Suzhou 215006, China
| | - Shuhan Tang
- Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Jia Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College,
Soochow University, Suzhou 215000, Jiangsu, China
| | - Shuqing Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College,
Soochow University, Suzhou 215000, Jiangsu, China
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine,
Nanjing Medical University, Nanjing 210029, China
| | - Yong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College,
Soochow University, Suzhou 215000, Jiangsu, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital ofSoochow University, Soochow University, Suzhou 215006, China
| |
Collapse
|
2
|
Xu W, Deng M, Meng X, Sun X, Tao X, Wang D, Zhang S, Zhen Y, Liu X, Liu M. The alterations in molecular markers and signaling pathways in chronic thromboembolic pulmonary hypertension, a study with transcriptome sequencing and bioinformatic analysis. Front Cardiovasc Med 2022; 9:961305. [PMID: 35958401 PMCID: PMC9362860 DOI: 10.3389/fcvm.2022.961305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
Background At present, the alterations in molecular markers and signaling pathways in chronic thromboembolic pulmonary hypertension (CTEPH) remain unclear. We aimed to compare the difference of molecular markers and signaling pathways in patients with CTEPH and healthy people with transcriptome sequencing and bioinformatic analysis. Methods We prospectively included 26 patients with CTEPH and 35 sex- and age-matched healthy volunteers as control. We extracted RNA from whole blood samples to construct the library. Then, qualified libraries were sequenced using PE100 strategy on BGIseq platform. Subsequently, the DESeq2 package in R was used to screen differentially expressed mRNAs (DEmRNAs) and differentially expressed long non-coding RNAs (DElncRNAs) of 7 patients with CTEPH and 5 healthy volunteers. Afterwards, we performed functional enrichment and protein–protein interaction analysis of DEmRNAs. We also performed lncRNA-mRNA co-expression analysis and lncRNA-miRNA-mRNA network construction. In addition, we performed diagnostic analysis on the GSE130391 dataset. Finally, we performed reverse transcription polymerase chain reaction (RT-PCR) of genes in 19 patients with CTEPH and 30 healthy volunteers. Results Gender and age between patients with CTEPH and healthy controls, between sequencing group and in vitro validation group, were comparable. A total of 437 DEmRNAs and 192 DElncRNAs were obtained. Subsequently, 205 pairs of interacting DEmRNAs and 232 pairs of lncRNA-mRNA relationship were obtained. DEmRNAs were significantly enriched in chemokine signaling pathway, metabolic pathways, arachidonic acid metabolism, and MAPK signaling pathway. Only one regulation pathway of SOBP-hsa-miR-320b-LINC00472 was found through ceRNA network construction. In diagnostic analysis, the area under curve (AUC) values of LINC00472, PIK3R6, SCN3A, and TCL6, respectively, were 0.964, 0.893, 0.750, and 0.732. Conclusion The identification of alterations in molecules and pathways may provide further research directions on pathogenesis of CTEPH. Additionally, LINC00472, PIK3R6, SCN3A, and TCL6 may act as the potential gene markers in CTEPH.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Mei Deng
- Department of Radiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiapei Meng
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xuebiao Sun
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xincao Tao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Dingyi Wang
- Institute of Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuai Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Min Liu
| |
Collapse
|
3
|
Seredinski S, Boos F, Günther S, Oo JA, Warwick T, Izquierdo Ponce J, Lillich FF, Proschak E, Knapp S, Gilsbach R, Pflüger-Müller B, Brandes RP, Leisegang MS. DNA topoisomerase inhibition with the HIF inhibitor acriflavine promotes transcription of lncRNAs in endothelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1023-1035. [PMID: 35228897 PMCID: PMC8844413 DOI: 10.1016/j.omtn.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/21/2022] [Indexed: 02/08/2023]
Abstract
The transcription factor hypoxia-inducible factor 1 (HIF1) is an important driver of cancer and is therefore an attractive drug target. Acriflavine (ACF) has been suggested to inhibit HIF1, but its mechanism of action is unknown. Here we investigated the interaction of ACF with DNA and long non-coding RNAs (lncRNAs) and its function in human endothelial cells. ACF promoted apoptosis and reduced proliferation, network formation, and angiogenic capacity. It also induced changes in gene expression, as determined by RNA sequencing (RNA-seq), which could not be attributed to specific inhibition of HIF1. A similar response was observed in murine lung endothelial cells. Although ACF increased and decreased a similar number of protein-coding genes, lncRNAs were preferentially upregulated under normoxic and hypoxic conditions. An assay for transposase accessibility with subsequent DNA sequencing (ATAC-seq) demonstrated that ACF induced strong changes in chromatin accessibility at lncRNA promoters. Immunofluorescence showed displacement of DNA:RNA hybrids. Such effects might be due to ACF-mediated topoisomerase inhibition, which was indeed the case, as reflected by DNA unwinding assays. Comparison with other acridine derivatives and topoisomerase inhibitors suggested that the specific function of ACF is an effect of acridinium-class compounds. This study demonstrates that ACF inhibits topoisomerases rather than HIF specifically and that it elicits a unique expression response of lncRNAs.
Collapse
Affiliation(s)
- Sandra Seredinski
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Frederike Boos
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Judit Izquierdo Ponce
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Felix F Lillich
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Ralf Gilsbach
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
4
|
Lv Z, Jiang R, Hu X, Zhao Q, Sun Y, Wang L, Li J, Miao Y, Wu W, Yuan P. Dysregulated lncRNA TUG1 in different pulmonary artery cells under hypoxia. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:879. [PMID: 34164513 PMCID: PMC8184498 DOI: 10.21037/atm-21-2040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background At present, the role of lncRNAs in the pathogenesis of hypoxia-induced pulmonary hypertension (HPH) is not fully understood. This study aimed to explore differences in the hypoxia-induced expression of lncRNAs and their potential role in multiple pulmonary artery cells. Methods LncRNA expression in pulmonary artery smooth muscle cells (PASMCs), pulmonary microvascular endothelial cells (PMECs), and pericytes (PCs) was analyzed by high-throughput sequencing and compared between normoxic and hypoxic cells. Bioinformatics analysis was conducted to predict their functions. Results PASMCs, PMECs, and PCs displayed 275 (140 upregulated), 251 (162 upregulated), and 290 (176 upregulated) different lncRNAs, respectively. Among these, lncRNA TUG1 levels increased in PASMCs and PCs but decreased in PMECs. Bioinformatics analysis indicated that lncRNA TUG1 might target miR-145-5p, thereby affecting SOX4 and BMF expression, and could also regulate miR-129-5p levels to affect CYP1B1 and VCP expression. It could also regulate miR-138-5p levels to affect KCNK3 and RHOC expression. Conclusions Hypoxia exposure of vascular cells resulted in differential expression of lncRNAs, especially lncRNA TUG1, which showed significant abnormal expression in all three types of vascular cells under hypoxia. Our results suggested that abnormal expression of lncRNA TUG1 might be involved in the regulation of pulmonary vascular cell function under hypoxia.
Collapse
Affiliation(s)
- Zhenchun Lv
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China.,Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China.,Department of Gastroenterology, the 903rd Hospital of People's Liberation Army, Hangzhou, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yuanyuan Sun
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jinling Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Qin Y, Yan G, Qiao Y, Wang D, Luo E, Hou J, Tang C. Emerging role of long non-coding RNAs in pulmonary hypertension and their molecular mechanisms (Review). Exp Ther Med 2020; 20:164. [PMID: 33093902 PMCID: PMC7571311 DOI: 10.3892/etm.2020.9293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening cardiopulmonary condition caused by several pathogenic factors. All types of PH are characterized by the excessive proliferation of pulmonary artery endothelial cells and pulmonary artery smooth muscle cells, apoptosis resistance, pulmonary vascular remodeling, sustained elevated pulmonary arterial pressure, right heart failure and even death. Over the past decade, next generation sequencing, particularly RNA-sequencing, has identified some long non-coding RNAs (lncRNAs) that may act as regulators of cell differentiation, proliferation and apoptosis. Studies have shown that lncRNAs are closely associated with the development of several diseases, including cardiovascular diseases. In addition, a number of studies have reported that lncRNAs, including maternally expressed gene 3, metastasis-associated lung adenocarcinoma transcript 1, taurine upregulated 1 and cancer susceptibility candidate 2, serve important roles in the pathogenesis of PH. Despite the development of novel drug treatments, the mortality rate of PH remains high with no evident downward trend. Therefore, certain lncRNAs may be considered as therapeutic targets for the treatment of incurable PH. The present review summarizes the latest research on lncRNAs and PH, aiming to briefly describe PH-associated lncRNAs and their mechanisms of action.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Erfei Luo
- Department of Cardiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiantong Hou
- Department of Cardiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
6
|
Huang J, Zhang L, Fang Y, Jiang W, Du J, Zhu J, Hu M, Shen B. Differentially expressed transcripts and associated protein pathways in basilar artery smooth muscle cells of the high-salt intake-induced hypertensive rat. PeerJ 2020; 8:e9849. [PMID: 33083107 PMCID: PMC7566752 DOI: 10.7717/peerj.9849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
The pathology of cerebrovascular disorders, such as hypertension, is associated with genetic changes and dysfunction of basilar artery smooth muscle cells (BASMCs). Long-term high-salt diets have been associated with the development of hypertension. However, the molecular mechanisms underlying salt-sensitive hypertension-induced BASMC modifications have not been well defined, especially at the level of variations in gene transcription. Here, we utilized high-throughput sequencing and subsequent signaling pathway analyses to find a two–fold change or greater upregulated expression of 203 transcripts and downregulated expression of 165 transcripts in BASMCs derived from rats fed a high-salt diet compared with those from control rats. These differentially expressed transcripts were enriched in pathways involved in cellular, morphological, and structural plasticity, autophagy, and endocrine regulation. These transcripts changes in the BASMCs derived from high-salt intake–induced hypertensive rats may provide critical information about multiple cellular processes and biological functions that occur during the development of cerebrovascular disorders and provide potential new targets to help control or block the development of hypertension.
Collapse
Affiliation(s)
- Junhao Huang
- Guangzhou Sport University, Guangdong Provincial Key Laboratory of Sports and Health Promotion, Guangzhou, Guangdong, China
| | - Lesha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wan Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinhang Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Min Hu
- Guangzhou Sport University, Guangdong Provincial Key Laboratory of Sports and Health Promotion, Guangzhou, Guangdong, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Shen ZJ, Han YC, Wang YN, Xie HZ. LncRNA and mRNA expression profiles and functional networks of hyposalivation of the submandibular gland in hypertension. Sci Rep 2020; 10:13972. [PMID: 32811845 PMCID: PMC7434885 DOI: 10.1038/s41598-020-70853-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022] Open
Abstract
Hyposalivation is a complication of hypertension. However, little is known about the role of long non-coding RNAs (lncRNAs) in salivary glands in hypertension. This study aimed to compare the lncRNA and mRNA expression profiles between spontaneous hypertension rats (SHRs) and Wistar-Kyoto (WKY) rats through microarray analysis and apple bioinformatics methods to analyse their potential roles in hyposalivation. The differentially expressed (DE) lncRNAs and mRNAs were confirmed by quantitative real-time PCR (qRT-PCR). Compared with WKY rats, 225 DE lncRNAs and 473 DE mRNAs were identified in the SMG of SHRs. The pathway analyses of DE mRNAs showed that inflammatory mediator regulation of transient receptor potential channels was involved in hyposalivation in SHRs. Ten DE lncRNAs were chosen for further research. A coding-non-coding gene co-expression (CNC) network and competing endogenous RNA (ceRNA) network analysis revealed that the potential functions of these 10 DE lncRNAs were closely connected with the processes of the immune response. This study showed abundant DE lncRNAs and mRNAs in hypertensive SMGs. Furthermore, our results indicated strong associations between the immune response and hyposalivation and showed the potential of immune-related genes as novel and therapeutic targets for hyposalivation.
Collapse
Affiliation(s)
- Zhu-Jun Shen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 1000730, China
| | - Ye-Chen Han
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 1000730, China
| | - Yi-Ning Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 1000730, China
| | - Hong-Zhi Xie
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 1000730, China.
| |
Collapse
|
8
|
Zhang JR, Sun HJ. LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Mol Biol Rep 2020; 47:5535-5547. [PMID: 32567025 DOI: 10.1007/s11033-020-05601-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Endothelial cells are major constituents in the vasculature, and they act as important players in vascular homeostasis via secretion/release of vasodilators and vasoconstrictors. In healthy arteries, endothelial cells play a key role in the regulation of vascular tone, cellular adhesion, and angiogenesis. A shift in the functions of the blood vessels toward vasoconstriction, proinflammatory state, oxidative stress and deficiency of nitric oxide (NO) might lead to endothelial dysfunction, a key event implicated in the pathophysiology of cardiovascular metabolic diseases, including diabetes, atherosclerosis, arterial hypertension and pulmonary arterial hypertension (PAH). Thus, reversibility of endothelial dysfunction may be beneficial for maintaining vascular homeostasis. In recent years, accumulative evidence has documented that noncoding RNAs (ncRNAs) are critically involved in endothelial homeostasis. Specifically, long noncoding RNAs (lncRNAs) and circular RNAs are highly expressed in endothelial cells where they serve as important mediators in normal endothelial functions. Dysregulation of lncRNAs and circular RNAs has been tightly associated with hypertension-related endothelial dysfunction. In this review, we will summarize the current progression and underlying mechanisms of lncRNA and circular RNA in endothelial cell biology under hypertensive conditions. We will also highlight their potential as biomarkers or therapeutic targets for hypertension and its associated endothelial dysfunction.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi, 214062, People's Republic of China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
9
|
Down-regulation of lncRNA MALAT1 alleviates vascular lesion and vascular remodeling of rats with hypertension. Aging (Albany NY) 2020; 11:5192-5205. [PMID: 31343412 PMCID: PMC6682528 DOI: 10.18632/aging.102113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022]
Abstract
Objective: Recently, the effect of long non-coding RNAs (lncRNAs) in hypertension (HTN) has been identified. This study aims to explore the expression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in HTN and its role in vascular lesion and remodeling of HTN rats. Results: LncRNA MALAT1 expression was up-regulated in HTN patients, and lncRNA MALAT1 could be an effective index of HTN diagnosis. Down-regulated MALAT1 and inhibited Notch-1 could reduce relative factor expression, including inflammation-related factors, endothelial function-related factors and oxidative stress-related factors, and inhibit apoptosis of aortic endothelial cells of HTN rats. Methods: LncRNA MALAT1 expression in HTN patients and healthy controls was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Angiotensin II (Ang II)-induced HTN rat models were injected with MALAT1-siRNA, empty lentivirus vector, Notch pathway inhibitor (DAPT) and dimethyl sulphoxide (DMSO) via caudal vein. After three-week treatment, changes of blood pressure, inflammatory factor levels, endothelial function-related factors, oxidative stress indices and apoptosis of vascular endothelial cells were determined by a series of assays. Conclusion: This study revealed that down-regulated lncRNA MALAT1 could alleviate the vascular lesion and remodeling of HTN rats, the mechanism may be related to the inhibited activation of Notch signaling pathway.
Collapse
|
10
|
Gong YP, Zhang YW, Su XQ, Gao HB. Inhibition of long noncoding RNA MALAT1 suppresses high glucose-induced apoptosis and inflammation in human umbilical vein endothelial cells by suppressing the NF-κB signaling pathway. Biochem Cell Biol 2020; 98:669-675. [PMID: 32502356 DOI: 10.1139/bcb-2019-0403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The study investigated the expression of long noncoding RNA (lncRNA) MALAT1 in high glucose (HG)-induced human vascular endothelial cells (HUVECs) and the role of MALAT1 in the apoptosis of HG-induced HUVECs. The HUVECs were cultured and induced with 25 mmol/L HG. After that, the HUVECs were transfected with MALAT1 siRNA. The expression levels of MALAT1 were detected with qPCR, whereas the expression levels of Bax, Bcl-2, cleaved-caspase-3, cleaved-caspase-9, p-65, and p-p65 were detected using Western blot. The roles of MALAT1 in cell activities, including apoptosis, were evaluated using the CCK-8 assay, TUNEL staining, and flow cytometry. The expression levels of inflammatory factors (TNF-α and IL-6) were measured using ELISA. The expression levels of MALAT1, TNF-α, and IL-6 in HUVECs were increased in the HG environment; however, when MALAT1 was silenced in the HUVECs, cell proliferation increased significantly, the expression levels of TNF-α, IL-6, Bax, cleaved-caspase-3, and cleaved-caspase-9 decreased, and the rate of apoptosis also decreased. Silencing MALAT1 inhibited the expression of p-p65 in HG-induced HUVECs. In conclusion, our study demonstrated that MALAT1 is upregulated in HG-induced HUVECs, and inhibition of MALAT1 inhibits HG-induced apoptosis and inflammation in HUVECs by suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yu-Ping Gong
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| | - Ya-Wei Zhang
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| | - Xiao-Qing Su
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| | - Hai-Bo Gao
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| |
Collapse
|
11
|
Zhong W, Huang Q, Zeng L, Hu Z, Tang X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int J Med Sci 2019; 16:1492-1503. [PMID: 31673241 PMCID: PMC6818210 DOI: 10.7150/ijms.35158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
12
|
Yu B, Wang S. Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics 2018; 8:3654-3675. [PMID: 30026873 PMCID: PMC6037039 DOI: 10.7150/thno.26024] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) represent a large subgroup of RNAs that are longer than 200 nucleotides and have no apparent protein coding potential. They have diverse functions in different biological processes by regulating chromatin remodeling or protein translation. This review summarizes the recent progress of lncRNAs in angiogenesis and vascular diseases. A general overview of lncRNA functional mechanisms will be introduced. A list of lncRNAs, which are termed "Angio-LncRs", including MALAT1, MANTIS, PUNISHER, MEG3, MIAT, SENCR and GATA6-AS, will be discussed regarding their expression, regulation, function and mechanism of action in angiogenesis. Implications of lncRNAs in vascular diseases, such as atherosclerosis, hypertension, vascular retinopathies and tumor angiogenesis will also be discussed.
Collapse
Affiliation(s)
- Bo Yu
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA, 70118, USA
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA, 70118, USA
- Department of Ophthalmology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-69, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
20-HETE promotes glucose-stimulated insulin secretion in an autocrine manner through FFAR1. Nat Commun 2018; 9:177. [PMID: 29330456 PMCID: PMC5766607 DOI: 10.1038/s41467-017-02539-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Abstract
The long-chain fatty acid receptor FFAR1 is highly expressed in pancreatic β-cells. Synthetic FFAR1 agonists can be used as antidiabetic drugs to promote glucose-stimulated insulin secretion (GSIS). However, the physiological role of FFAR1 in β-cells remains poorly understood. Here we show that 20-HETE activates FFAR1 and promotes GSIS via FFAR1 with higher potency and efficacy than dietary fatty acids such as palmitic, linoleic, and α-linolenic acid. Murine and human β-cells produce 20-HETE, and the ω-hydroxylase-mediated formation and release of 20-HETE is strongly stimulated by glucose. Pharmacological inhibition of 20-HETE formation and blockade of FFAR1 in islets inhibits GSIS. In islets from type-2 diabetic humans and mice, glucose-stimulated 20-HETE formation and 20-HETE-dependent stimulation of GSIS are strongly reduced. We show that 20-HETE is an FFAR1 agonist, which functions as an autocrine positive feed-forward regulator of GSIS, and that a reduced glucose-induced 20-HETE formation contributes to inefficient GSIS in type-2 diabetes. FFAR1 receptor is highly expressed in beta cells and its activation has been suggested as therapy against type-2 diabetes. Here, Tunaru et al. show that 20-hydroxyeicosatetraenoic acid, produced within the islets upon glucose stimulation, acts in an autocrine manner to stimulate insulin secretion via FFAR1 activation.
Collapse
|
14
|
Juni RP, Abreu RC, da Costa Martins PA. Regulation of microvascularization in heart failure - an endothelial cell, non-coding RNAs and exosome liaison. Noncoding RNA Res 2017; 2:45-55. [PMID: 30159420 PMCID: PMC6096416 DOI: 10.1016/j.ncrna.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Heart failure is a complex syndrome involving various pathophysiological processes. An increasing body of evidence shows that the myocardial microvasculature is essential for the homeostasis state and that a decompensated heart is associated with microvascular dysfunction as a result of impaired endothelial angiogenic capacity. The intercellular communication between endothelial cells and cardiomyocytes through various signaling molecules, such as vascular endothelial growth factor, nitric oxide, and non-coding RNAs is an important determinant of cardiac microvascular function. Non-coding RNAs are transported from endothelial cells to cardiomyocytes, and vice versa, regulating microvascular properties and angiogenic processes in the heart. Small-exocytosed vesicles, called exosomes, which are secreted by both cell types, can mediate this intercellular communication. The purpose of this review is to highlight the contribution of the microvasculature to proper heart function maintenance by focusing on the interaction between cardiac endothelial cells and myocytes with a specific emphasis on non-coding RNAs (ncRNAs) in this form of cell-to-cell communication. Finally, the potential of ncRNAs as targets for angiogenesis therapy will also be discussed.
Collapse
Affiliation(s)
- Rio P. Juni
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ricardo C. Abreu
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A. da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity. Redox Biol 2016; 9:287-295. [PMID: 27614387 PMCID: PMC5021817 DOI: 10.1016/j.redox.2016.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022] Open
Abstract
The NADPH oxidases are important transmembrane proteins producing reactive oxygen species (ROS). Within the Nox family, different modes of activation can be discriminated. Nox1-3 are dependent on different cytosolic subunits, Nox4 seems to be constitutively active and Nox5 is directly activated by calcium. With the exception of Nox5, all Nox family members are thought to depend on the small transmembrane protein p22phox. With the discovery of the CRISPR/Cas9-system, a tool to alter genomic DNA sequences has become available. So far, this method has not been widely used in the redox community. On such basis, we decided to study the requirement of p22phox in the Nox complex using CRISPR/Cas9-mediated knockout. Knockout of the gene of p22phox, CYBA, led to an ablation of activity of Nox4 and Nox1 but not of Nox5. Production of hydrogen peroxide or superoxide after knockout could be rescued with either human or rat p22phox, but not with the DUOX-maturation factors DUOXA1/A2. Furthermore, different mutations of p22phox were studied regarding the influence on Nox4-dependent H2O2 production. P22phox Q130* and Y121H affected maturation and activity of Nox4. Hence, Nox5-dependent O2•- production is independent of p22phox, but native p22phox is needed for maturation of Nox4 and production of H2O2.
Collapse
|