1
|
Aires I, Duarte JA, Vitorino R, Moreira-Gonçalves D, Oliveira P, Ferreira R. Restoring Skeletal Muscle Health through Exercise in Breast Cancer Patients and after Receiving Chemotherapy. Int J Mol Sci 2024; 25:7533. [PMID: 39062775 PMCID: PMC11277416 DOI: 10.3390/ijms25147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer (BC) stands out as the most commonly type of cancer diagnosed in women worldwide, and chemotherapy, a key component of treatment, exacerbates cancer-induced skeletal muscle wasting, contributing to adverse health outcomes. Notably, the impact of chemotherapy on skeletal muscle seems to surpass that of the cancer itself, with inflammation identified as a common trigger for muscle wasting in both contexts. In skeletal muscle, pro-inflammatory cytokines modulate pathways crucial for the delicate balance between protein synthesis and breakdown, as well as satellite cell activation and myonuclear accretion. Physical exercise consistently emerges as a crucial therapeutic strategy to counteract cancer and chemotherapy-induced muscle wasting, ultimately enhancing patients' quality of life. However, a "one size fits all" approach does not apply to the prescription of exercise for BC patients, with factors such as age, menopause and comorbidities influencing the response to exercise. Hence, tailored exercise regimens, considering factors such as duration, frequency, intensity, and type, are essential to maximize efficacy in mitigating muscle wasting and improving disease outcomes. Despite the well-established anti-inflammatory role of aerobic exercise, resistance exercise proves equally or more beneficial in terms of mass and strength gain, as well as enhancing quality of life. This review comprehensively explores the molecular pathways affected by distinct exercise regimens in the skeletal muscle of cancer patients during chemotherapy, providing critical insights for precise exercise implementation to prevent skeletal muscle wasting.
Collapse
Affiliation(s)
- Inês Aires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - José Alberto Duarte
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
| | - Paula Oliveira
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
| |
Collapse
|
2
|
Ferreira RP, Duarte JA. Protein Turnover in Skeletal Muscle: Looking at Molecular Regulation towards an Active Lifestyle. Int J Sports Med 2023; 44:763-777. [PMID: 36854391 DOI: 10.1055/a-2044-8277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Skeletal muscle is a highly plastic tissue, able to change its mass and functional properties in response to several stimuli. Skeletal muscle mass is influenced by the balance between protein synthesis and breakdown, which is regulated by several signaling pathways. The relative contribution of Akt/mTOR signaling, ubiquitin-proteasome pathway, autophagy among other signaling pathways to protein turnover and, therefore, to skeletal muscle mass, differs depending on the wasting or loading condition and muscle type. By modulating mitochondria biogenesis, PGC-1α has a major role in the cell's bioenergetic status and, thus, on protein turnover. In fact, rates of protein turnover regulate differently the levels of distinct protein classes in response to atrophic or hypertrophic stimuli. Mitochondrial protein turnover rates may be enhanced in wasting conditions, whereas the increased turnover of myofibrillar proteins triggers muscle mass gain. The present review aims to update the knowledge on the molecular pathways implicated in the regulation of protein turnover in skeletal muscle, focusing on how distinct muscle proteins may be modulated by lifestyle interventions with emphasis on exercise training. The comprehensive analysis of the anabolic effects of exercise programs will pave the way to the tailored management of muscle wasting conditions.
Collapse
Affiliation(s)
- Rita Pinho Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jose Alberto Duarte
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CIAFEL, Faculty of Sports, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
3
|
Abstract
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.
Collapse
Affiliation(s)
- Wiktoria Ratajczak
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Sarah D Atkinson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK.
| |
Collapse
|
4
|
Zhong D, Li Y, Huang Y, Hong X, Li J, Jin R. Molecular Mechanisms of Exercise on Cancer: A Bibliometrics Study and Visualization Analysis via CiteSpace. Front Mol Biosci 2022; 8:797902. [PMID: 35096970 PMCID: PMC8794585 DOI: 10.3389/fmolb.2021.797902] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: To analyze the research hot spots and frontiers of molecular mechanisms of exercise on cancer via CiteSpace. Method: Related publications in the Web of Science Core Collection Science Citation Index Expanded were retrieved from inception to November 27th, 2021. Then we used CiteSpace to generate network maps and identify top authors, institutions, countries, keywords, co-cited authors, journals, references and research trends. Results: A total of 1,130 related publications were retrieved. The most productive author and journal were Lee W Jones and PLOS ONE. Hanahan D and Warburg O were the most cited authors. Fudan University and Shanghai Jiao Tong University were the leading institutions, while China was the leading country. Top-cited authors and references generally focused on the epidemiology and hallmarks of cancer. Top five keywords with both high frequency and high betweenness centrality were breast cancer, aerobic glycolysis, oxidative stress, gene expression, skeletal muscle. Keyword “warburg effect” ranked first with the highest citation burst, while “inflammation”, “hepatocellular carcinoma”, “epithelial mesenchymal transition”, and “adipose tissue” were emerging research foci. Conclusion: This study analyzed the research hot spots and frontiers of molecular mechanisms of exercise on cancer via CiteSpace. Based on the results, altered metabolism (aerobic glycolysis, insulin resistance, myokines), oxidative stress, gene expression and apoptosis were hot-research mechanisms of exercise on cancer. Emerging research foci of mechanisms were generally around inflammation, epithelial mesenchymal transition and adipokines. In addition, future studies could carry in-depth research of interactions between different mechanisms and try to elucidate the recommended doses and intensities of exercise for cancer, especially in breast, colorectal, prostate cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dongling Zhong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxi Li
- School of Acupuncture Moxibustion and Tuina, The Third Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yijie Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaojuan Hong
- School of Acupuncture Moxibustion and Tuina, The Third Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaojuan Hong, ; Rongjiang Jin, ; Juan Li,
| | - Juan Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaojuan Hong, ; Rongjiang Jin, ; Juan Li,
| | - Rongjiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaojuan Hong, ; Rongjiang Jin, ; Juan Li,
| |
Collapse
|
5
|
Delphan M, Delfan N, West D, Delfan M. Exercise protocols: The gap between preclinical and clinical exercise oncology studies. Metabol Open 2022; 13:100165. [PMID: 35146403 PMCID: PMC8801378 DOI: 10.1016/j.metop.2022.100165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Preclinical studies provide foundational knowledge to develop new effective treatments for use in clinical practice. Similar to clinical exercise oncology studies, it is also important to monitor, identify and/or avoid cancer-induced complications in preclinical (e.g., murine) exercise oncology studies. This may help close the gap between preclinical and clinical exercise oncology studies. The aim of the present mini review is to provide insight into exercise protocol design in preclinical exercise oncology studies in order to close the preclinical-clinical gap. A secondary aim was to examine exercise-responsive outcomes in the preclinical versus clinical setting. Method We reviewed animal studies in exercise oncology. A literature search was performed in PubMed/Medline and studies in English were screened. Results We found that the majority of preclinical exercise protocols have not been at least tested clinically. We found some evidence that certain outcomes of preclinical studies (e.g., markers of cellular and molecular adaptation) that translate to clinical studies. However, this translation was dependent on the use, by investigators in their study design, of suitable and applicable preclinical exercise protocols. Conclusions Cancer and its treatment-induced complications (e.g., fatigue, cardiac atrophy, cachexia, etc.) have largely been ignored in the exercise protocols of preclinical oncology studies. Preclinical exercise oncology studies should consider the limitations of human exercise oncology studies when conducting gap analysis for their study design to increase the probability that findings related to mechanistic adaptations in exercise oncology will be translatable to the clinical setting. By virtue of paying heed to patient compliance and adverse effects, clinical exercise oncology research teams must design relevant, feasible exercise protocols; researchers in preclinical exercise oncology should also take such factors into consideration in order to help bridge the gap between preclinical and clinical studies in exercise oncology. Preclinical research provides foundational knowledge for the development of human experimental and clinical studies; however, direct translation of preclinical findings has a low success rate. Exercise can provide potent wide-ranging beneficial effects for people with chronic diseases, including cancer. A minority of preclinical exercise oncology studies account for cancer-related factors in their experimental design. To lessen the preclinical–clinical gap in exercise oncology research, preclinical exercise oncology studies should consider using experimental designs that are based on locomotor activity and/or VO2peak in animals bearing cancer.
Collapse
Affiliation(s)
- Mahmoud Delphan
- Department of Physical Education and Sport Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Delfan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Daniel West
- KITE Research, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Maryam Delfan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran
- Corresponding author. Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Vanak Village Street, Tehran, Iran.
| |
Collapse
|
6
|
Niels T, Tomanek A, Freitag N, Schumann M. Can Exercise Counteract Cancer Cachexia? A Systematic Literature Review and Meta-Analysis. Integr Cancer Ther 2021; 19:1534735420940414. [PMID: 32954861 PMCID: PMC7503012 DOI: 10.1177/1534735420940414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Cancer-cachexia is associated with chronic inflammation, impaired muscle metabolism and body mass loss, all of which are classical targets of physical exercise. Objectives: This systematic review and meta-analysis aimed to determine the effects of exercise on body and muscle mass in cachectic cancer hosts. Data Sources: PubMed/Medline, EMBASE, CINHAL, ISI Web of Science, and Cochrane Library were searched until July 2019. Study Selection: Trials had to be randomized controlled trials or controlled trials including cancer patients or animal models with cachexia-inducing tumors. Only sole exercise interventions over at least 7 days performed in a controlled environment were included. Data Extraction: Risk of bias was assessed and a random-effects model was used to pool effect sizes by standardized mean differences (SMD). Results: All eligible 20 studies were performed in rodents. Studies prescribed aerobic (n = 15), strength (n = 3) or combined training (n = 2). No statistical differences were observed for body mass and muscle weight of the gastrocnemius, soleus, and tibialis muscles between the exercise and control conditions (SMD = ‒0.05, 95%CI-0.64-0.55, P = 0.87). Exercise duration prior to tumor inoculation was a statistical moderator for changes in body mass under tumor presence (P = 0.04). Limitations: No human trials were identified. A large study heterogeneity was present, probably due to different exercise modalities and outcome reporting. Conclusion: Exercise does not seem to affect cancer-cachexia in rodents. However, the linear regression revealed that exercise duration prior to tumor inoculation led to reduced cachexia-severity, possibly strengthening the rationale for the use of exercise in cancer patients at cachexia risk.
Collapse
Affiliation(s)
- Timo Niels
- University Hospital of Cologne, Cologne, Germany
| | | | - Nils Freitag
- German Sport University Cologne, Cologne, Germany
| | | |
Collapse
|
7
|
Renzini A, Riera CS, Minic I, D’Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021; 11:517. [PMID: 34436458 PMCID: PMC8398298 DOI: 10.3390/metabo11080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Carles Sánchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Isidora Minic
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Chiara D’Ercole
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy;
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Luca Madaro
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| |
Collapse
|
8
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
9
|
Hiroux C, Dalle S, Koppo K, Hespel P. Voluntary exercise does not improve muscular properties or functional capacity during C26-induced cancer cachexia in mice. J Muscle Res Cell Motil 2021; 42:169-181. [PMID: 33606189 DOI: 10.1007/s10974-021-09599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
Exercise training is considered as a potential intervention to counteract muscle degeneration in cancer cachexia. However, evidence to support such intervention is equivocal. Therefore, we investigated the effect of exercise training, i.e. voluntary wheel running, on muscle wasting, functional capacity, fiber type composition and vascularization during experimental cancer cachexia in mice. Balb/c mice were injected with PBS (CON) or C26 colon carcinoma cells to induce cancer cachexia (C26). Mice had free access to a running wheel in their home cage (CONEX and C26EX, n = 8-9) or were sedentary (CONS and C26S, n = 8-9). Mice were sacrificed 18 days upon tumor cell injection. Immunohistochemical analyes were performed on m. gastrocnemius and quadriceps, and ex vivo contractile properties were assessed in m. soleus and extensor digitorum longus (EDL). Compared with CON, C26 mice exhibited body weight loss (~ 20 %), muscle atrophy (~ 25 %), reduced grip strength (~ 25 %), and lower twitch and tetanic force (~ 20 %) production in EDL but not in m. soleus. Furthermore, muscle of C26 mice were characterizd by a slow-to-fast fiber type shift (type IIx fibers: +57 %) and increased capillary density (~ 30 %). In C26 mice, wheel running affect neither body weight loss, nor muscle atrophy or functional capacity, nor inhibited tumor growth. However, wheel running induced a type IIb to type IIa fiber shift in m. quadriceps from both CON and C26, but not in m. gastrocnemius. Wheel running does not exacerbate muscular degeneration in cachexic mice, but, when voluntary, is insufficient to improve the muscle phenotype.
Collapse
Affiliation(s)
- Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium.
| |
Collapse
|
10
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
11
|
Penna F, Ballarò R, Costelli P. The Redox Balance: A Target for Interventions Against Muscle Wasting in Cancer Cachexia? Antioxid Redox Signal 2020; 33:542-558. [PMID: 32037856 DOI: 10.1089/ars.2020.8041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The management of cancer patients is frequently complicated by the occurrence of a complex syndrome known as cachexia. It is mainly characterized by muscle wasting, a condition that associates with enhanced protein breakdown and with negative energy balance. While the mechanisms underlying cachexia have been only partially elucidated, understanding the pathogenesis of muscle wasting in cancer hosts is mandatory to design new targeted therapeutic strategies. Indeed, most of cancer patients will experience cachexia during the course of their disease, and about 25% of cancer-related deaths are due to this syndrome, rather than to the tumor itself. Recent Advances: Compelling evidence suggests that an altered redox homeostasis likely contributes to cancer-induced muscle protein depletion, directly or indirectly activating the intracellular degradative pathways. In addition, oxidative stress impinges on both mitochondrial number and function; the other way round, altered mitochondria lead to enhanced redox imbalance, creating a vicious loop that eventually results in negative energy metabolism. Critical Issues: The present review focuses on the possibility that pharmacological and nonpharmacological strategies able to restore a physiologic redox balance could be useful components of treatment schedules aimed at counteracting cancer-induced muscle wasting. Future Directions: Exercise and the use of exercise mimetic drugs represent the most promising approaches capable of reinforcing the muscle antioxidant defenses of cancer patients. The results from ongoing and new clinical trials are needed to validate the preclinical studies and provide effective therapies for cancer cachexia. Antioxid. Redox Signal. 33, 542-558.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Riccardo Ballarò
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
12
|
Exercise training counteracts urothelial carcinoma-induced alterations in skeletal muscle mitochondria phospholipidome in an animal model. Sci Rep 2019; 9:13423. [PMID: 31530825 PMCID: PMC6748971 DOI: 10.1038/s41598-019-49010-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer associated body wasting is the cause of physical disability, reduced tolerance to anticancer therapy and reduced survival of cancer patients and, similarly to cancer, its incidence is increasing. There is no cure for this clinical condition, and the pathophysiological process involved is largely unknown. Exercise training appears as the gold standard non-pharmacological therapy for the management of this wasting syndrome. Herein we used a lipidomics approach based on liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS) to study the effect of exercise in the modulation of phospholipids profile of mitochondria isolated from gastrocnemius muscle of a pre-clinical model of urothelial carcinoma-related body wasting (BBN induced), submitted to 13 weeks of treadmill exercise after diagnosis. Multivariate analysis showed a close relationship between the BBN exercise group and both control groups (control sedentary and control exercise), while the BBN sedentary group was significantly separated from the control groups and the BBN exercise group. Univariate statistical analysis revealed differences mainly in phosphatidylserine (PS) and cardiolipin (CL), although some differences were also observed in phosphatidylinositol (PI, LPI) and phosphatidylcholine (PC) phospholipids. PS with shorter fatty acyl chains were up-regulated in the BBN sedentary group, while the other species of PS with longer FA and a higher degree of unsaturation were down-regulated, but the BBN exercise group was mostly similar to control groups. Remarkably, exercise training prevented these alterations and had a positive impact on the ability of mitochondria to produce ATP, restoring the healthy phospholipid profile. The remodelling of mitochondria phospholipid profile in rats with urothelial carcinoma allowed confirming the importance of the lipid metabolism in mitochondria dysfunction in cancer-induced skeletal muscle remodelling. The regulation of phospholipid biosynthetic pathways observed in the BBN exercise group supported the current perspective that exercise is an adequate therapeutic approach for the management of cancer-related muscle remodeling.
Collapse
|
13
|
Ackermann S, Mrowka R. Cancer - An ongoing fight searching for reasons and therapies. Acta Physiol (Oxf) 2019; 226:e13275. [PMID: 30869193 DOI: 10.1111/apha.13275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Susanne Ackermann
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| | - Ralf Mrowka
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| |
Collapse
|
14
|
Luo X, Liao C, Quan J, Cheng C, Zhao X, Bode AM, Cao Y. Posttranslational regulation of PGC-1α and its implication in cancer metabolism. Int J Cancer 2019; 145:1475-1483. [PMID: 30848477 PMCID: PMC6767394 DOI: 10.1002/ijc.32253] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/01/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
Deregulation of cellular metabolism is well established in cancer. The mitochondria are dynamic organelles and act as the center stage for energy metabolism. Central to mitochondrial regulatory network is peroxisome proliferator-activated receptor γ coactivator 1a (PGC-1α), which serves as a master regulator of mitochondrial proliferation and metabolism. The activity and stability of PGC-1α are subject to dynamic and versatile posttranslational modifications including phosphorylation, ubiquitination, methylation and acetylation in response to metabolic stress and other environmental signals. In this review, we describe the structure of PGC-1α. Then, we discuss recent advances in the posttranslational regulatory machinery of PGC-1α, which affects its transcriptional activity, stability and organelle localization. Furthermore, we address the important roles of PGC-1α in tumorigenesis and malignancy. Finally, we also mention the clinical therapeutic potentials of PGC-1α modulators. A better understanding of the elegant function of PGC-1α in cancer progression could provide novel insights into therapeutic interventions through the targeting of PGC-1α signaling.
Collapse
Affiliation(s)
- Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China.,Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| | - Chaoliang Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Can Cheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China.,Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
15
|
Bloch W. The countermeasure for cancer cachexia related muscle wasting does not need to be muscle hyperplasia. Acta Physiol (Oxf) 2019; 225:e13248. [PMID: 30597774 DOI: 10.1111/apha.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| |
Collapse
|
16
|
Ortiz A, Sanchez-Niño MD. Sarcopenia in CKD: a roadmap from basic pathogenetic mechanisms to clinical trials. Clin Kidney J 2019; 12:110-112. [PMID: 30746137 PMCID: PMC6366131 DOI: 10.1093/ckj/sfz001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 01/05/2023] Open
Abstract
Sarcopenia and frailty are recognized as key risk factors for adverse outcomes in patients on renal replacement therapy or with non-dialysis chronic kidney disease (CKD). However, there is still debate about their pathogenesis and, thus, about the best therapeutic approaches, as well as the impact on outcomes of current approaches based on different exercise programmes. In the past two issues of Clinical Kidney Journal, several manuscripts address the issue of sarcopenia in CKD from the point of view of pathogenesis and new therapeutic approaches, monitoring of results, implementation of exercise programmes and specific potential benefits of exercise programmes in dialysis and non-dialysis CKD patients, as assessed by clinical trials.
Collapse
Affiliation(s)
- Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| |
Collapse
|
17
|
Mrowka R, Westphal A. Skeletal muscle in the fight against chronic diseases. Acta Physiol (Oxf) 2018; 223:e13086. [PMID: 29729216 DOI: 10.1111/apha.13086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- R. Mrowka
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| | - A. Westphal
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| |
Collapse
|
18
|
Affiliation(s)
- Pontus B. Persson
- Corporate member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin; Berlin Germany
| | - A. Bondke Persson
- Corporate member of Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
19
|
Ferreira R, Nogueira-Ferreira R, Vitorino R, Santos LL, Moreira-Gonçalves D. The impact of exercise training on adipose tissue remodelling in cancer cachexia. Porto Biomed J 2017; 2:333-339. [PMID: 32258790 DOI: 10.1016/j.pbj.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/22/2017] [Indexed: 01/10/2023] Open
Abstract
Cachexia affects the majority of patients with advanced cancer and no effective treatment is currently available to address this paraneoplastic syndrome. It is characterized by a reduction in body weight due to the loss of white adipose tissue (WAT) and skeletal muscle. The loss of WAT seems to occur at an earlier time point than skeletal muscle proteolysis, with recent evidence suggesting that the browning of WAT may be a major contributor to this process. Several factors seem to modulate WAT browning including pro-inflammatory cytokines; however, the underlying molecular pathways are poorly characterized. Exercise training is currently recommended for the clinical management of low-grade inflammatory conditions as cancer cachexia. While it seems to counterbalance the impairment of skeletal muscle function and attenuate the loss of muscle mass, little is known regarding its effects in adipose tissue. The browning of WAT is one of the mechanisms through which exercise improves body composition in overweight/obese individuals. While this effect is obviously advantageous in this clinical setting, it remains to be clarified if exercise training could protect or exacerbate the cachexia-related catabolic phenotype occurring in adipose tissue of cancer patients. Herein, we overview the molecular players involved in adipose tissue remodelling in cancer cachexia and in exercise training and hypothesize on the mechanisms modulated by the synergetic effect of these conditions. A better understanding of how physical activity regulates body composition will certainly help in the development of successful multimodal therapeutic strategies for the clinical management of cancer cachexia.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rui Vitorino
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group - Research Center, IPO-Porto, Porto, Portugal.,Health School of University of Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, IPO-Porto, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal.,CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Leitner LM, Wilson RJ, Yan Z, Gödecke A. Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases. Antioxid Redox Signal 2017; 26:700-717. [PMID: 27835923 PMCID: PMC5421600 DOI: 10.1089/ars.2016.6942] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cachexia is defined as a complex metabolic syndrome that is associated with underlying illness and a loss of muscle with or without loss of fat mass. This disease is associated with a high incidence with chronic diseases such as heart failure, cancer, chronic obstructive pulmonary disease (COPD), and acquired immunodeficiency syndrome (AIDS), among others. Since there is currently no effective treatment available, cachectic patients have a poor prognosis. Elucidation of the underlying mechanisms is, therefore, an important medical task. Recent Advances: There is accumulating evidence that the diseased organs such as heart, lung, kidney, or cancer tissue secrete soluble factors, including Angiotensin II, myostatin (growth differentiation factor 8 [GDF8]), GDF11, tumor growth factor beta (TGFβ), which act on skeletal muscle. There, they induce a set of genes called atrogenes, which, among others, induce the ubiquitin-proteasome system, leading to protein degradation. Moreover, elevated reactive oxygen species (ROS) levels due to modulation of NADPH oxidases (Nox) and mitochondrial function contribute to disease progression, which is characterized by loss of muscle mass, exercise resistance, and frailty. CRITICAL ISSUES Although substantial progress was achieved to elucidate the pathophysiology of cachexia, effectice therapeutic strategies are urgently needed. FUTURE DIRECTIONS With the identification of key components of the aberrant inter-organ communication leading to cachexia, studies in mice and men to inhibit ROS formation, induction of anti-oxidative superoxide dismutases, and upregulation of muscular nitric oxide (NO) formation either by pharmacological tools or by exercise are promising approaches to reduce the extent of skeletal muscle wasting. Antioxid. Redox Signal. 26, 700-717.
Collapse
Affiliation(s)
- Lucia M Leitner
- 1 Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum , Düsseldorf, Germany
| | - Rebecca J Wilson
- 2 Department of Medicine-Cardiovascular Medicine, University of Virginia , Charlottesville, Virginia
| | - Zhen Yan
- 2 Department of Medicine-Cardiovascular Medicine, University of Virginia , Charlottesville, Virginia.,3 Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Axel Gödecke
- 1 Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum , Düsseldorf, Germany
| |
Collapse
|
21
|
Bloch W. Tumour muscle crosstalk more as regulation of muscle wasting - role of exercise. Acta Physiol (Oxf) 2017; 219:704-705. [PMID: 27497432 DOI: 10.1111/apha.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- W. Bloch
- Department of Molecular and Cellular Sport Medicine; German Sport University Cologne; Cologne Germany
| |
Collapse
|