1
|
Custodia A, Aramburu-Núñez M, Rodríguez-Arrizabalaga M, Pías-Peleteiro JM, Vázquez-Vázquez L, Camino-Castiñeiras J, Aldrey JM, Castillo J, Ouro A, Sobrino T, Romaus-Sanjurjo D. Biomarkers Assessing Endothelial Dysfunction in Alzheimer's Disease. Cells 2023; 12:cells12060962. [PMID: 36980302 PMCID: PMC10047803 DOI: 10.3390/cells12060962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common degenerative disorder in the elderly in developed countries. Currently, growing evidence is pointing at endothelial dysfunction as a key player in the cognitive decline course of AD. As a main component of the blood-brain barrier (BBB), the dysfunction of endothelial cells driven by vascular risk factors associated with AD allows the passage of toxic substances to the cerebral parenchyma, producing chronic hypoperfusion that eventually causes an inflammatory and neurotoxic response. In this process, the levels of several biomarkers are disrupted, such as an increase in adhesion molecules that allow the passage of leukocytes to the cerebral parenchyma, increasing the permeability of the BBB; moreover, other vascular players, including endothelin-1, also mediate artery inflammation. As a consequence of the disruption of the BBB, a progressive neuroinflammatory response is produced that, added to the astrogliosis, eventually triggers neuronal degeneration (possibly responsible for cognitive deterioration). Recently, new molecules have been proposed as early biomarkers for endothelial dysfunction that can constitute new therapeutic targets as well as early diagnostic and prognostic markers for AD.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mariña Rodríguez-Arrizabalaga
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Vázquez-Vázquez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Camino-Castiñeiras
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel Aldrey
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Uurasmaa TM, Streng T, Alkio M, Karikoski M, Heinonen I, Anttila K. Subcutaneous B16 melanoma impairs intrinsic pressure generation and relaxation of the heart, which are not restored by short-term voluntary exercise in mice. Am J Physiol Heart Circ Physiol 2022; 322:H1044-H1056. [PMID: 35486476 DOI: 10.1152/ajpheart.00586.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate whether subcutaneous melanoma impairs intrinsic cardiac function and hypoxia tolerance in mice. Additionally it was investigated whether these changes could be prevented by voluntary running-wheel exercise. The role of different molecular pathways were also analysed. Male mice (C57Bl/6NCrl) were divided into unexercised tumor-free group, unexercised melanoma group and exercised melanoma group. Experiment lasted 2.7±0.1 weeks (determined by the tumor size) after which the heart function was measured in different oxygen levels ex vivo using Langendorff method. All the melanoma mice had lower pressure amplitude (50.3%), rate of pressure production (54.1%) and decline (52.5%) in hearts ex vivo as compared to tumor-free group. There were no functional differences between the two melanoma groups. All the groups had similar weight change, heart weights, cardiomyocyte sizes, levels of Ca2+-channels, energy metabolism enzyme activities, lipid peroxidation and reactive oxygen species in their cardiac tissue homogenates. However, all the melanoma mice had 7.4% lower superoxidase dismutase activity compared to the control animals, which might reduce the ability of the heart to react to changes in oxidative stress. The exercising melanoma group had 28.6% higher average heart capillary density compared to the unexercised melanoma group. Short-term wheel running did not affect the tumor growth. In conclusion, subcutaneous melanoma seems to impair intrinsic heart function even prior to cachexia and these functional alterations were not caused by any of the measured molecular markers. Short-term voluntary running-wheel exercise was insufficient to alleviate the intrinsic cardiac impairments caused by melanoma.
Collapse
Affiliation(s)
- Tytti-Maria Uurasmaa
- Laboratory of Animal Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Tomi Streng
- Laboratory of Animal Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Milla Alkio
- Laboratory of Animal Physiology, Department of Biology, University of Turku, Turku, Finland.,Poznan University of Medical Sciences, Poland
| | - Marika Karikoski
- MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland
| | - Ilkka Heinonen
- Turku PET Centre, University of Turku, and Turku University Hospital, Turku, Finland.,Rydberg Laboratory of Applied Sciences, University of Halmstad, Halmstad, Sweden
| | - Katja Anttila
- Laboratory of Animal Physiology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Yamasaki Y, Matsuura K, Sasaki D, Shimizu T. Assessment of human bioengineered cardiac tissue function in hypoxic and re-oxygenized environments to understand functional recovery in heart failure. Regen Ther 2021; 18:66-75. [PMID: 33869689 PMCID: PMC8044384 DOI: 10.1016/j.reth.2021.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 01/30/2023] Open
Abstract
Introduction Myocardial recovery is one of the targets for heart failure treatment. A non-negligible number of heart failure with reduced ejection fraction (EF) patients experience myocardial recovery through treatment. Although myocardial hypoxia has been reported to contribute to the progression of heart failure even in non-ischemic cardiomyopathy, the relationship between contractile recovery and re-oxygenation and its underlying mechanisms remain unclear. The present study investigated the effects of hypoxia/re-oxygenation on bioengineered cardiac cell sheets-tissue function and the underlying mechanisms. Methods Bioengineered cardiac cell sheets-tissue was fabricated with human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) using temperature-responsive culture dishes. Cardiac tissue functions in the following conditions were evaluated with a contractile force measurement system: continuous normoxia (20% O2) for 12 days; hypoxia (1% O2) for 4 days followed by normoxia (20% O2) for 8 days; or continuous hypoxia (1% O2) for 8 days. Cell number, sarcomere structure, ATP levels, mRNA expressions and Ca2+ transients of hiPSC-CM in those conditions were also assessed. Results Hypoxia (4 days) elicited progressive decreases in contractile force, maximum contraction velocity, maximum relaxation velocity, Ca2+ transient amplitude and ATP level, but sarcomere structure and cell number were not affected. Re-oxygenation (8 days) after hypoxia (4 days) was associated with progressive increases in contractile force, maximum contraction velocity and relaxation time to the similar extent levels of continuous normoxia group, while maximum relaxation velocity was still significantly low even after re-oxygenation. Ca2+ transient magnitude, cell number, sarcomere structure and ATP level after re-oxygenation were similar to those in the continuous normoxia group. Hypoxia/re-oxygenation up-regulated mRNA expression of PLN. Conclusions Hypoxia and re-oxygenation condition directly affected human bioengineered cardiac tissue function. Further understanding the molecular mechanisms of functional recovery of cardiac tissue after re-oxygenation might provide us the new insight on heart failure with recovered ejection fraction and preserved ejection fraction.
Collapse
Key Words
- ATP, adenosine triphosphate
- Cardiac cell sheet
- Contractile force
- DMEM, Dulbecco's Modified Eagle Medium
- EF, ejection fraction
- FBS, fetal bovine serum
- HFmrEF, heart failure with midrange EF
- HFpEF, heart failure with preserved EF
- HFrEF, heart failure with reduced EF
- Heart failure
- Human induced pluripotent stem cells
- Hypoxia
- NPPA, natriuretic peptide precursor A
- PLN, phospholamban
- Re-oxygenation
- SERCA, sarco/endoplasmic reticulum Ca2+ ATPase
- cTnT, cardiac troponin T
- hiPSC-CMs, human induced pluripotent stem cell-derived cardiomyocytes
Collapse
Affiliation(s)
- Yu Yamasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
- Corresponding author. Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Li B, Zhao H, Wu Y, Zhu Y, Zhang J, Yang G, Yan Q, Li J, Li T, Liu L. Mitochondrial-Derived Vesicles Protect Cardiomyocytes Against Hypoxic Damage. Front Cell Dev Biol 2020; 8:214. [PMID: 32426351 PMCID: PMC7212461 DOI: 10.3389/fcell.2020.00214] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 01/20/2023] Open
Abstract
Myocardial ischemia is a condition with insufficient oxygen supporting the heart tissues, which may result from myocardial infarction or trauma-induced hemorrhagic shock. In order to develop better preventive and therapeutic strategies for myocardial ischemic damage, it is important that we understand the mechanisms underlying this type of injury. Mitochondrial-derived vesicles (MDVs) have been proposed as a novel player in maintaining mitochondrial quality control. This study aimed to investigate the role and possible mechanisms of MDVs in ischemia/hypoxia-induced myocardial apoptosis. H9C2 cardiomyocytes were used for the cellular experiments. A 40% fixed blood volume hemorrhagic shock rat model was used to construct the acute general ischemic models. MDVs were detected using immunofluorescence staining with PDH and TOM20. Exogenous MDVs were reconstituted in vitro from isolated mitochondria under different hypoxic conditions. The results demonstrate that MDV production was negatively correlated with cardiomyocyte apoptosis under hypoxic conditions; exogenous MDVs inhibited hypoxia-induced cardiomyocyte apoptosis; and MDV-mediated protection against hypoxia-induced cardiomyocyte apoptosis was accomplished via Bcl-2 interactions in the mitochondrial pathway. This study provides evidence that MDVs protect cardiomyocytes against hypoxic damage by inhibiting mitochondrial apoptosis. Our study used a novel approach that expands our understanding of MDVs and highlights that MDVs may be part of the endogenous response to hypoxia designed to mitigate damage. Strategies that stimulate cardiomyocytes to produce cargo-specific MDVs, including Bcl-2 containing MDVs, could theoretically be helpful in treating ischemic/hypoxic myocardial injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department 2, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department 2, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Lugnier C, Meyer A, Charloux A, Andrès E, Gény B, Talha S. The Endocrine Function of the Heart: Physiology and Involvements of Natriuretic Peptides and Cyclic Nucleotide Phosphodiesterases in Heart Failure. J Clin Med 2019; 8:jcm8101746. [PMID: 31640161 PMCID: PMC6832599 DOI: 10.3390/jcm8101746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Besides pumping, the heart participates in hydro-sodium homeostasis and systemic blood pressure regulation through its endocrine function mainly represented by the large family of natriuretic peptides (NPs), including essentially atrial natriuretic (ANP) and brain natriuretic peptides (BNP). Under normal conditions, these peptides are synthesized in response to atrial cardiomyocyte stretch, increase natriuresis, diuresis, and vascular permeability through binding of the second intracellular messenger’s guanosine 3′,5′-cyclic monophosphate (cGMP) to specific receptors. During heart failure (HF), the beneficial effects of the enhanced cardiac hormones secretion are reduced, in connection with renal resistance to NP. In addition, there is a BNP paradox characterized by a physiological inefficiency of the BNP forms assayed by current methods. In this context, it appears interesting to improve the efficiency of the cardiac natriuretic system by inhibiting cyclic nucleotide phosphodiesterases, responsible for the degradation of cGMP. Recent data support such a therapeutic approach which can improve the quality of life and the prognosis of patients with HF.
Collapse
Affiliation(s)
- Claire Lugnier
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
| | - Alain Meyer
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Anne Charloux
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Emmanuel Andrès
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Internal Medicine and Metabolic Diseases, Medical Clinic B, Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Bernard Gény
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Samy Talha
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| |
Collapse
|
6
|
Bełtowski J. Short-term follow-up BNP level and risk stratification after myocardial infarction. Int J Cardiol 2019; 291:173-174. [DOI: 10.1016/j.ijcard.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 11/29/2022]
|
7
|
Persson PB, Bondke Persson A. Oxygen-to little, too much or just right. Acta Physiol (Oxf) 2018; 223:e13076. [PMID: 29675842 DOI: 10.1111/apha.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P B Persson
- Charité - Universitätsmedizin Berlin - corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Vegetative Physiology, Berlin, Germany
| | - A Bondke Persson
- Charité - Universitätsmedizin Berlin - corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Affiliation(s)
- P. B. Persson
- Charité-Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Vegetative Physiology; Berlin Germany
| | - A. Bondke Persson
- Charité-Universitätsmedizin Berlin; Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
| |
Collapse
|
9
|
Talha S, Charloux A, Piquard F, Geny B. Brain natriuretic peptide and right heart dysfunction after heart transplantation. Clin Transplant 2017; 31. [PMID: 28314080 DOI: 10.1111/ctr.12969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 02/04/2023]
Abstract
Heart transplantation (HT) should normalize cardiac endocrine function, but brain natriuretic peptide (BNP) levels remain elevated after HT, even in the absence of left ventricular hemodynamic disturbance or allograft rejection. Right ventricle (RV) abnormalities are common in HT recipients (HTx), as a result of engraftment process, tricuspid insufficiency, and/or repeated inflammation due to iterative endomyocardial biopsies. RV function follow-up is vital for patient management as RV dysfunction is a recognized cause of in-hospital death and is responsible for a worse prognosis. Interestingly, few and controversial data are available concerning the relationship between plasma BNP levels and RV functional impairment in HTx. This suggests that infra-clinical modifications, such as subtle immune system disorders or hypoxic conditions, might influence BNP expression. Nevertheless, due to other altered circulating molecular forms of BNP, a lack of specificity of BNP assays is described in heart failure patients. This phenomenon could exist in HT population and could explain elevated BNP plasmatic levels despite a normal RV function. In clinical practice, intra-individual change in BNP over time, rather than absolute BNP values, might be more helpful in detecting right cardiac dysfunction in HTx.
Collapse
Affiliation(s)
- Samy Talha
- Department of Physiology and Functional Explorations, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Equipe d'Accueil 3072, Université de Strasbourg, Strasbourg, France
| | - Anne Charloux
- Department of Physiology and Functional Explorations, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Equipe d'Accueil 3072, Université de Strasbourg, Strasbourg, France
| | - François Piquard
- Equipe d'Accueil 3072, Université de Strasbourg, Strasbourg, France
| | - Bernard Geny
- Department of Physiology and Functional Explorations, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Equipe d'Accueil 3072, Université de Strasbourg, Strasbourg, France
| |
Collapse
|