1
|
Dhillon SK, Gunn ER, Pedersen MV, Lear CA, Wassink G, Davidson JO, Gunn AJ, Bennet L. Alpha-adrenergic receptor activation after fetal hypoxia-ischaemia suppresses transient epileptiform activity and limits loss of oligodendrocytes and hippocampal neurons. J Cereb Blood Flow Metab 2023; 43:947-961. [PMID: 36703575 DOI: 10.1177/0271678x231153723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure to hypoxic-ischaemia (HI) is consistently followed by a delayed fall in cerebral perfusion. In preterm fetal sheep this is associated with impaired cerebral oxygenation, consistent with mismatch between perfusion and metabolism. In the present study we tested the hypothesis that alpha-adrenergic inhibition after HI would improve cerebral perfusion, and so attenuate mismatch and reduce neural injury. Chronically instrumented preterm (0.7 gestation) fetal sheep received sham-HI (n = 10) or HI induced by complete umbilical cord occlusion for 25 minutes. From 15 minutes to 8 hours after HI, fetuses received either an intravenous infusion of a non-selective alpha-adrenergic antagonist, phentolamine (10 mg bolus, 10 mg/h infusion, n = 10), or saline (n = 10). Fetal brains were processed for histology 72 hours post-HI. Phentolamine infusion was associated with increased epileptiform transient activity and a greater fall in cerebral oxygenation in the early post-HI recovery phase. Histologically, phentolamine was associated with greater loss of oligodendrocytes and hippocampal neurons. In summary, contrary to our hypothesis, alpha-adrenergic inhibition increased epileptiform transient activity with an exaggerated fall in cerebral oxygenation, and increased neural injury, suggesting that alpha-adrenergic receptor activation after HI is an important endogenous neuroprotective mechanism.
Collapse
Affiliation(s)
| | - Eleanor R Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mette V Pedersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Bömers JP, Grell AS, Edvinsson L, Johansson SE, Haanes KA. The MEK Inhibitor Trametinib Improves Outcomes following Subarachnoid Haemorrhage in Female Rats. Pharmaceuticals (Basel) 2022; 15:ph15121446. [PMID: 36558896 PMCID: PMC9785726 DOI: 10.3390/ph15121446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhage (SAH) is a haemorrhagic stroke that causes approximately 5% of all stroke incidents. We have been working on a treatment strategy that targets changes in cerebrovascular contractile receptors, by blocking the MEK/ERK1/2 signalling pathway. Recently, a positive effect of trametinib was found in male rats, but investigations of both sexes in pre-clinical studies are an important necessity. In the current study, a SAH was induced in female rats, by autologous blood-injection into the pre-chiasmatic cistern. This produces a dramatic, transient increase in intracranial pressure (ICP) and an acute and prolonged decrease in cerebral blood flow. Rats were then treated with either vehicle or three doses of 0.5 mg/kg trametinib (specific MEK/ERK1/2 inhibitor) intraperitoneally at 3, 9, and 24 h after the SAH. The outcome was assessed by a panel of tests, including intracranial pressure (ICP), sensorimotor tests, a neurological outcome score, and myography. We observed a significant difference in arterial contractility and a reduction in subacute increases in ICP when the rats were treated with trametinib. The sensory motor and neurological outcomes in trametinib-treated rats were significantly improved, suggesting that the improved outcome in females is similar to that of males treated with trametinib.
Collapse
Affiliation(s)
- Jesper Peter Bömers
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Department of Neurosurgery, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, 221 84 Lund, Sweden
| | - Sara Ellinor Johansson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Correspondence:
| |
Collapse
|
3
|
Wolf V, Abdul Y, Ergul A. Novel Targets and Interventions for Cognitive Complications of Diabetes. Front Physiol 2022; 12:815758. [PMID: 35058808 PMCID: PMC8764363 DOI: 10.3389/fphys.2021.815758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 01/16/2023] Open
Abstract
Diabetes and cognitive dysfunction, ranging from mild cognitive impairment to dementia, often coexist in individuals over 65 years of age. Vascular contributions to cognitive impairment/dementia (VCID) are the second leading cause of dementias under the umbrella of Alzheimer's disease and related dementias (ADRD). Over half of dementia patients have VCID either as a single pathology or a mixed dementia with AD. While the prevalence of type 2 diabetes in individuals with dementia can be as high as 39% and diabetes increases the risk of cerebrovascular disease and stroke, VCID remains to be one of the less understood and less studied complications of diabetes. We have identified cerebrovascular dysfunction and compromised endothelial integrity leading to decreased cerebral blood flow and iron deposition into the brain, respectively, as targets for intervention for the prevention of VCID in diabetes. This review will focus on targeted therapies that improve endothelial function or remove iron without systemic effects, such as agents delivered intranasally, that may result in actionable and disease-modifying novel treatments in the high-risk diabetic population.
Collapse
Affiliation(s)
- Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Yasir Abdul,
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Chen KC, Song ZM, Croaker GD. Brain size reductions associated with endothelin B receptor mutation, a cause of Hirschsprung's disease. BMC Neurosci 2021; 22:42. [PMID: 34147087 PMCID: PMC8214790 DOI: 10.1186/s12868-021-00646-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/08/2021] [Indexed: 01/03/2023] Open
Abstract
Background ETB has been reported to regulate neurogenesis and vasoregulation in foetal development. Its dysfunction was known to cause HSCR, an aganglionic colonic disorder with syndromic forms reported to associate with both small heads and developmental delay. We therefore asked, "is CNS maldevelopment a more general feature of ETB mutation?" To investigate, we reviewed the micro-CT scans of an ETB−/− model animal, sl/sl rat, and quantitatively evaluated the structural changes of its brain constituents. Methods Eleven neonatal rats generated from ETB+/− cross breeding were sacrificed. Micro-CT scans were completed following 1.5% iodine-staining protocols. All scans were reviewed for morphological changes. Selected organs were segmented semi-automatically post-NLM filtering: TBr, T-CC, T-CP, OB, Med, Cer, Pit, and S&I Col. Volumetric measurements were made using Drishti rendering software. Rat genotyping was completed following analysis. Statistical comparisons on organ volume, organ growth rate, and organ volume/bodyweight ratios were made between sl/sl and the control groups based on autosomal recessive inheritance. One-way ANOVA was also performed to evaluate potential dose-dependent effect. Results sl/sl rat has 16.32% lower body weight with 3.53% lower growth rate than the control group. Gross intracranial morphology was preserved in sl/sl rats. However, significant volumetric reduction of 20.33% was detected in TBr; similar reductions were extended to the measurements of T-CC, T-CP, OB, Med, and Pit. Consistently, lower brain and selected constituent growth rates were detected in sl/sl rat, ranging from 6.21% to 11.51% reduction. Lower organ volume/bodyweight ratio was detected in sl/sl rats, reflecting disproportional neural changes with respect to body size. No consistent linear relationships exist between ETB copies and intracranial organ size or growth rates. Conclusion Although ETB−/− mutant has a normal CNS morphology, significant size reductions in brain and constituents were detected. These structural changes likely arise from a combination of factors secondary to dysfunctional ET-1/ET-3/ETB signalling, including global growth impairment from HSCR-induced malnutrition and dysregulations in the neurogenesis, angiogenesis, and cerebral vascular control. These changes have important clinical implications, such as autonomic dysfunction or intellectual delay. Although further human study is warranted, our study suggested comprehensive managements are required for HSCR patients, at least in ETB−/− subtype. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00646-z.
Collapse
Affiliation(s)
- Ko-Chin Chen
- Medical School, Australian National University, Canberra, ACT, 2601, Australia.
| | - Zan-Min Song
- Medical School, Australian National University, Canberra, ACT, 2601, Australia
| | - Geoffrey D Croaker
- Medical School, Australian National University, Canberra, ACT, 2601, Australia.,The Canberra Hospital, Yamba Drive, Garran, ACT, 2605, Australia
| |
Collapse
|
5
|
The role of carotid stenosis ultrasound scale in the prediction of ischemic stroke. Neurol Sci 2020; 41:1193-1199. [PMID: 31901124 PMCID: PMC7196942 DOI: 10.1007/s10072-019-04204-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/17/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION To improve the accuracy of ultrasound techniques for the assessment of carotid stenosis, we designed a novel carotid artery stenosis ultrasound scale (CASUS), and evaluated its accuracy, reliability, and its value in predicting the occurrence of cardiovascular and cerebrovascular diseases in a prospective study. METHODS A total of 750 patients with first-time ischemic stroke and hospitalized within 24 h were enrolled in the study. Using color Doppler ultrasound (CDUS), the degree of stenosis and blood flow (BF) in bilateral internal carotid arteries (ICA) and the V1-V3 segment of vertebral arteries (VA) was assessed. Cubic simulation curves for BF and global blood flow (GBF) over the stenosis score (SS), total stenosis score (TSS), and radiological imaging- total stenosis score (RI-TSS) were fitted and compared. The receiver operating characteristic (ROC) curves using TSS, RI-TSS, or GBF to predict various ischemic stroke endpoints were also analyzed and compared. RESULTS There was a linear relationship between SS and BF both ICA and VA (R2 were 0.734 and 0.783, respectively, both P < 0.05). Both TSS and RI-TSS with GBF showed an inverse "S" curve relationship (R2 was 0.839 and 0.843, all P < 0.05). The AUC values of TSS-based and RI-TSS-based predictions of each endpoint were all greater than 0.7 (all P < 0.05), but the differences of the AUC values between TSS, RI-TSS, and GBF were not statistically significant (all P > 0.05). CONCLUSIONS The novel CASUS can better reflect the level of cerebral reperfusion in patients with ischemic stroke and can better predict the occurrence of cardiovascular and cerebrovascular diseases.
Collapse
|
6
|
Lele AV, Alunpipatthanachai B, Qiu Q, Clark-Bell C, Watanitanon A, Moore A, Chesnut RM, Armstead W, Vavilala MS. Plasma Levels, Temporal Trends and Clinical Associations between Biomarkers of Inflammation and Vascular Homeostasis after Pediatric Traumatic Brain Injury. Dev Neurosci 2019; 41:177-192. [PMID: 31553988 DOI: 10.1159/000502276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023] Open
Abstract
Expression of inflammatory (interleukin-6 [IL-6]) and vascular homeostatic (angiopoietin-2 [AP-2], endothelin-1 [ET-1], endocan-2 [EC-2]) biomarkers in pediatric traumatic brain injury (TBI) was examined in this prospective, observational cohort study of 28 children hospitalized with mild, moderate, and severe TBI by clinical measures (age, sex, Glasgow Coma Scale score [GCS], Injury Severity Score [ISS], and cerebral autoregulation status). Biomarker patterns suggest an inverse relationship between GCS and AP-2, GCS and IL-6, ISS and ET-1, but a direct relationship between GCS and ET-1 and ISS and AP-2. Biomarker patterns suggest an inverse relationship between AP-2 and ET-1, AP-2 and EC-2, but a direct relationship between AP-2 and IL-6, IL-6 and EC-2, and IL-6 and ET-1. Plasma concentrations of inflammatory and vascular homeostatic biomarkers suggest a role for inflammation and disruption of vascular homeostasis during the first 10 days across the severity spectrum of pediatric TBI. Although not statistically significant, without impact on cerebral autoregulation, biomarker patterns suggest a relationship between inflammation and alterations in vascular homeostasis. The large variation in biomarker levels within TBI severity and age groups, and by sex suggests other contributory factors to biomarker expression.
Collapse
Affiliation(s)
- Abhijit V Lele
- Department of Anesthesiology and Pain Medicine, Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA, .,Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA,
| | | | - Qian Qiu
- Department of Anesthesiology and Pain Medicine, Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Crystalyn Clark-Bell
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| | - Arraya Watanitanon
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| | - Anne Moore
- Department of Neurological Surgery and Orthopedics, Harborview Medical Center, Seattle, Washington, USA
| | - Randall M Chesnut
- Department of Neurological Surgery and Orthopedics, Harborview Medical Center, Seattle, Washington, USA
| | - William Armstead
- Department of Anethesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA.,Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Christensen ST, Grell AS, Johansson SE, Andersson CM, Edvinsson L, Haanes KA. Synergistic effects of a cremophor EL drug delivery system and its U0126 cargo in an ex vivo model. Drug Deliv 2019; 26:680-688. [PMID: 31274009 PMCID: PMC6691891 DOI: 10.1080/10717544.2019.1636421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuroprotection has proven clinically unsuccessful in subarachnoid hemorrhage. We believe that this is because the major component in the early damage pathway, the vascular wall, has not been given the necessary focus. U0126 is a potent inhibitor of vascular phenotypical changes, exemplified by functional endothelin B (ETB) receptor upregulation. The current study aimed to determine the optimal dose of U0126 ex vivo and test the toxicology of this dose in vivo. To find the optimal dose and test a suitable in vivo delivery system, we applied an ex vivo model of blood flow cessation and investigated functional ETB receptor upregulation (using a specific agonist) as the primary endpoint. The secondary endpoint was depolarization-induced contractility assessed by 60 mM K+ stimuli. Furthermore, an in vivo toxicology study was performed on the optimal selected doses. U0126 (10 µM) had a strong effect on the prevention of functional ETB receptor contractility, combined with minimal effect on the depolarization-induced contractility. When cremophor EL was chosen for drug delivery, it had an inhibitory and additive effect (combined with U0126) on the ETB receptor contractility. Hence, 10 µM U0126 in 0.5% cremophor EL seems to be a dose that will be close to the maximal inhibition observed ex vivo on basilar arteries, without exhibiting side effects in the toxicology studies. U0126 and cremophor EL are well tolerated at doses that have effect on ETB receptor upregulation. Cremophor EL has an additional positive effect, preventing functional ETB receptor upregulation, making it suitable as a drug delivery system.
Collapse
Affiliation(s)
- S T Christensen
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | - A S Grell
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | - S E Johansson
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | | | - L Edvinsson
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark.,c Department of Clinical Sciences, Division of Experimental Vascular Research , Lund University , Lund , Sweden
| | - K A Haanes
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| |
Collapse
|
8
|
Krueger K, Catanese L, Scholz H. Intermittent hypoxia: Friend and foe. Acta Physiol (Oxf) 2019; 226:e13276. [PMID: 30892796 DOI: 10.1111/apha.13276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Katharina Krueger
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenzo Catanese
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Scholz
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Li W, Abdul Y, Ward R, Ergul A. Endothelin and diabetic complications: a brain-centric view. Physiol Res 2018; 67:S83-S94. [PMID: 29947530 DOI: 10.33549/physiolres.933833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The global epidemic of diabetes is of significant concern. Diabetes associated vascular disease signifies the principal cause of morbidity and mortality in diabetic patients. It is also the most rapidly increasing risk factor for cognitive impairment, a silent disease that causes loss of creativity, productivity, and quality of life. Small vessel disease in the cerebral vasculature plays a major role in the pathogenesis of cognitive impairment in diabetes. Endothelin system, including endothelin-1 (ET-1) and the receptors (ET(A) and ET(B)), is a likely candidate that may be involved in many aspects of the diabetes cerebrovascular disease. In this review, we took a brain-centric approach and discussed the role of the ET system in cerebrovascular and cognitive dysfunction in diabetes.
Collapse
Affiliation(s)
- W Li
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA, Department of Physiology, Augusta University, Augusta, Georgia, USA.
| | | | | | | |
Collapse
|
10
|
Radziwon-Balicka A, Degn M, Johansson SE, Warfvinge K, Edvinsson L. A novel multicolor flow-cytometry application for quantitative detection of receptors on vascular smooth muscle cells. PLoS One 2017; 12:e0186504. [PMID: 29084284 PMCID: PMC5662092 DOI: 10.1371/journal.pone.0186504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/03/2017] [Indexed: 01/06/2023] Open
Abstract
There is a need to develop new techniques for quantitative measurement of receptors expression on particular vasculature cells types. Here, we describe and demonstrate a novel method to measure quantitatively and simultaneously the expression of endothelin B receptor (ETB) on vascular smooth muscle cells (VSMC). We isolated cells from male rat tissues such as: brain pial, brain intraparenchymal and retina vessels. To analyze solid tissues, a single-cell suspension was prepared by a combined mechanic and enzymatic process. The cells were stained with Fixable Viability Dye, followed by fixation, permeabilization and antibodies staining. The expression of ETB receptors on VSMC was measured by flow-cytometry and visualized by fluorescence microscopy. We obtained a high percentage of viable cells 87.6% ± 1.5% pial; 84.6% ± 4.3% parenchymal and 90.6% ± 4% retina after isolation of single cells. We performed a quantitative measurement of ETB receptor expression on VSMC and we identified two subpopulations of VSMC based on their expression of smooth muscle cells marker SM22α. The results obtained from pial vessels are statistically significant (38.4% ± 4% vs 9.8% ± 3.32%) between the two subpopulations of VSMC. The results obtained from intraparenchymal and retina vessels were not statistically significant. By specific gating on two subpopulations, we were able to quantify the expression of ETB receptors. The two subpopulation expressed the same level of ETB receptor (p = 0.45; p = 0.3; p = 0.42) in pial, parenchymal and retina vessels, respectively. We applied our method to the animals after induction of subarachnoid hemorrhage (SAH). There was statistically significant expression of ETB receptor (p = 0.02) on VSMC between sham 61.4% ± 4% and SAH 77.4% ± 4% rats pial vessels. The presented technique is able to quantitatively and selectively measure the level of protein expression on VSMC. The entire technique is optimized for rat tissue; however the protocol can also be adapted for other species.
Collapse
Affiliation(s)
- Aneta Radziwon-Balicka
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- * E-mail:
| | - Matilda Degn
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Sara E. Johansson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| |
Collapse
|