1
|
Punzi G, Ursini G, Chen Q, Radulescu E, Tao R, Huuki LA, Carlo PD, Torres LC, Shin JH, Catanesi R, Jaffe AE, Hyde TM, Kleinman JE, Mackay TFC, Weinberger DR. Genetics and Brain Transcriptomics of Completed Suicide. Am J Psychiatry 2022; 179:226-241. [PMID: 35236118 PMCID: PMC8908792 DOI: 10.1176/appi.ajp.2021.21030299] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors sought to study the transcriptomic and genomic features of completed suicide by parsing the method chosen, to capture molecular correlates of the distinctive frame of mind of individuals who die by suicide, while reducing heterogeneity. METHODS The authors analyzed gene expression (RNA sequencing) from postmortem dorsolateral prefrontal cortex of patients who died by suicide with violent compared with nonviolent means, nonsuicide patients with the same psychiatric disorders, and a neurotypical group (total N=329). They then examined genomic risk scores (GRSs) for each psychiatric disorder included, and GRSs for cognition (IQ) and for suicide attempt, testing how they predict diagnosis or traits (total N=888). RESULTS Patients who died by suicide by violent means showed a transcriptomic pattern remarkably divergent from each of the other patient groups but less from the neurotypical group; consistently, their genomic profile of risk was relatively low for their diagnosed illness as well as for suicide attempt, and relatively high for IQ: they were more similar to the neurotypical group than to other patients. Differentially expressed genes (DEGs) associated with patients who died by suicide by violent means pointed to purinergic signaling in microglia, showing similarities to a genome-wide association study of Drosophila aggression. Weighted gene coexpression network analysis revealed that these DEGs were coexpressed in a context of mitochondrial metabolic activation unique to suicide by violent means. CONCLUSIONS These findings suggest that patients who die by suicide by violent means are in part biologically separable from other patients with the same diagnoses, and their behavioral outcome may be less dependent on genetic risk for conventional psychiatric disorders and be associated with an alteration of purinergic signaling and mitochondrial metabolism.
Collapse
Affiliation(s)
- Giovanna Punzi
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Eugenia Radulescu
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Louise A. Huuki
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Pasquale Di Carlo
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Leonardo Collado Torres
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
| | - Roberto Catanesi
- Section of Forensic Psychiatry and Criminology, Institute of Legal Medicine, D.I.M., University of Bari ‘Aldo Moro’, Bari, Italy
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
| | - Trudy F. C. Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, South Carolina, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore. Maryland, USA
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Departments of Neuroscience, and Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020; 16:509-524. [PMID: 32641760 DOI: 10.1038/s41581-020-0304-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.
Collapse
|
4
|
Abdeen A, Sonoda H, Kaito A, Oshikawa-Hori S, Fujimoto N, Ikeda M. Decreased Excretion of Urinary Exosomal Aquaporin-2 in a Puromycin Aminonucleoside-Induced Nephrotic Syndrome Model. Int J Mol Sci 2020; 21:ijms21124288. [PMID: 32560242 PMCID: PMC7352848 DOI: 10.3390/ijms21124288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/15/2023] Open
Abstract
Urinary exosomes, small extracellular vesicles present in urine, are secreted from all types of renal epithelial cells. Aquaporin-2 (AQP2), a vasopressin-regulated water channel protein, is known to be selectively excreted into the urine through exosomes (UE-AQP2), and its renal expression is decreased in nephrotic syndrome. However, it is still unclear whether excretion of UE-AQP2 is altered in nephrotic syndrome. In this study, we examined the excretion of UE-AQP2 in an experimental rat model of nephrotic syndrome induced by the administration of puromycin aminonucleoside (PAN). Rats were assigned to two groups: a control group administered saline and a PAN group given a single intraperitoneal injection of PAN (125 mg/kg) at day 0. The experiment was continued for 8 days, and samples of urine, blood, and tissue were collected on days 2, 5, and 8. The blood and urine parameters revealed that PAN induced nephrotic syndrome on days 5 and 8, and decreases in the excretion of UE-AQP2 were detected on days 2 through 8 in the PAN group. Immunohistochemistry showed that the renal expression of AQP2 was decreased on days 5 and 8. The release of exosomal marker proteins into the urine through UEs was decreased on day 5 and increased on day 8. These data suggest that UE-AQP2 is decreased in PAN-induced nephrotic syndrome and that this reflects its renal expression in the marked proteinuria phase after PAN treatment.
Collapse
Affiliation(s)
- Ahmed Abdeen
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki 889-2192, Japan; (A.A.); (H.S.); (A.K.); (S.O.-H.); (N.F.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Hiroko Sonoda
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki 889-2192, Japan; (A.A.); (H.S.); (A.K.); (S.O.-H.); (N.F.)
| | - Ayaha Kaito
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki 889-2192, Japan; (A.A.); (H.S.); (A.K.); (S.O.-H.); (N.F.)
| | - Sayaka Oshikawa-Hori
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki 889-2192, Japan; (A.A.); (H.S.); (A.K.); (S.O.-H.); (N.F.)
| | - Naruki Fujimoto
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki 889-2192, Japan; (A.A.); (H.S.); (A.K.); (S.O.-H.); (N.F.)
| | - Masahiro Ikeda
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki 889-2192, Japan; (A.A.); (H.S.); (A.K.); (S.O.-H.); (N.F.)
- Correspondence: ; Tel.: +81-985-58-7268
| |
Collapse
|
5
|
Systematic review and practical guideline for the prevention and management of the renal side effects of lithium therapy. Eur Neuropsychopharmacol 2020; 31:16-32. [PMID: 31837914 DOI: 10.1016/j.euroneuro.2019.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/10/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Lithium is the first line therapy of bipolar mood disorder. Lithium-induced nephrogenic diabetes insipidus (Li-NDI) and lithium nephropathy (Li-NP, i.e., renal insufficiency) are prevalent side effects of lithium therapy, with significant morbidity. The objective of this systematic review is to provide an overview of preventive and management strategies for Li-NDI and Li-NP. For this, the PRISMA guideline for systematic reviews was used. Papers on the prevention and/or treatment of Li-NDI or Li-NP, and (influenceable) risk factors for development of Li-NDI or Li-NP were included. We found that the amount of evidence on prevention and treatment of Li-NDI and Li-NP is scarce. To prevent Li-NDI and Li-NP we advise to use a once-daily dosing schedule, target the lowest serum lithium level that is effective and prevent lithium intoxication. We emphasize the importance of monitoring for Li-NDI and Li-NP, as early diagnosis and treatment can prevent further progression and permanent damage. Collaboration between psychiatrist, nephrologist and patients themselves is essential. In patients with Li-NDI and/or Li-NP cessation of lithium therapy and/or switch to another mood stabilizer should be considered. In patients with Li-NDI, off label therapy with amiloride can be useful.
Collapse
|
6
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|