1
|
Wan H, Gao N, Lu W, Lu C, Chen J, Wang Y, Dong H. NCX1 coupled with TRPC1 to promote gastric cancer via Ca 2+/AKT/β-catenin pathway. Oncogene 2022; 41:4169-4182. [PMID: 35882979 PMCID: PMC9418000 DOI: 10.1038/s41388-022-02412-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Plasma membrane Na+/Ca2+ exchanger 1 (NCX1) is a bidirectional ion transporter to operate in Ca2+ entry or exit modes, and TRPC1 is Ca2+-permeable channel. Both NCX1 and TRPC1 play critical roles in maintaining cytosolic free Ca2+ ([Ca2+]cyt) homeostasis in mammalian cells. Although either TRPC1 channel or Ca2+ entry mode of NCX1 is implicated in some tumorigenesis, it has not been explored if a coordination of NCX1 and TRPC1 involves in the pathogenesis of H. pylori-associated human gastric cancer (GC). Here we found the protein expression of NCX1 was significantly enhanced in human GC specimens, which correlated with tumor progression and poor survival in GC patients. TRPC1 and NCX1 were parallelly enhanced, co-localized and bound in human GC cells. By a functional coupling, TRPC1 drives NCX1 to the Ca2+ entry mode, raising [Ca2+]cyt in GC cells. Moreover, CaCl2, H. pylori and their virulence factors all enhanced expressions and activities of NCX1 and TRPC1, and evoked aberrant Ca2+ entry to promote proliferation, migration, and invasion of GC cells through AKT/β-catenin pathway. Tumor growth and metastasis also depended on the enhanced expression of NCX1 in subcutaneously xenografted GC mouse model. Overall, our findings indicate that TRPC1/NCX1 coupling may promote H. pylori-associated GC through the Ca2+/AKT/β-catenin pathway. Since the Ca2+ exit mode and the Ca2+ entry mode of NCX1 play different roles under mostly physiological and pathological conditions respectively, targeting TRPC1/NCX1 coupling could be a novel strategy for selectively blocking Ca2+ entry mode to potentially treat digestive cancer with less side effect.
Collapse
Affiliation(s)
- Hanxing Wan
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao, 266073, China.,Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Nannan Gao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao, 266073, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yimin Wang
- Department of General Surgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao, 266073, China. .,Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Mercado-Perez A, Beyder A. Gut feelings: mechanosensing in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2022; 19:283-296. [PMID: 35022607 PMCID: PMC9059832 DOI: 10.1038/s41575-021-00561-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
The primary function of the gut is to procure nutrients. Synchronized mechanical activities underlie nearly all its endeavours. Coordination of mechanical activities depends on sensing of the mechanical forces, in a process called mechanosensation. The gut has a range of mechanosensory cells. They function either as specialized mechanoreceptors, which convert mechanical stimuli into coordinated physiological responses at the organ level, or as non-specialized mechanosensory cells that adjust their function based on the mechanical state of their environment. All major cell types in the gastrointestinal tract contain subpopulations that act as specialized mechanoreceptors: epithelia, smooth muscle, neurons, immune cells, and others. These cells are tuned to the physical properties of the surrounding tissue, so they can discriminate mechanical stimuli from the baseline mechanical state. The importance of gastrointestinal mechanosensation has long been recognized, but the latest discoveries of molecular identities of mechanosensors and technical advances that resolve the relevant circuitry have poised the field to make important intellectual leaps. This Review describes the mechanical factors relevant for normal function, as well as the molecules, cells and circuits involved in gastrointestinal mechanosensing. It concludes by outlining important unanswered questions in gastrointestinal mechanosensing.
Collapse
Affiliation(s)
- Arnaldo Mercado-Perez
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, MN, USA
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Niendorf T, Frydman L, Neeman M, Seeliger E. Google maps for tissues: Multiscale imaging of biological systems and disease. Acta Physiol (Oxf) 2020; 228:e13392. [PMID: 31549487 DOI: 10.1111/apha.13392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | | | | | - Erdmann Seeliger
- Institute of Physiology Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin Berlin Institute of Health Berlin Germany
| |
Collapse
|