1
|
Yazdani S, Bilan PJ, Jaldin-Fincati JR, Pang J, Ceban F, Saran E, Brumell JH, Freeman SA, Klip A. Dynamic glucose uptake, storage, and release by human microvascular endothelial cells. Mol Biol Cell 2022; 33:ar106. [PMID: 35921166 DOI: 10.1091/mbc.e22-04-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endothelia determine blood-to-tissue solute delivery, yet glucose transit is poorly understood. To illuminate mechanisms, we tracked [3H]-2-deoxyglucose (2-DG) in human adipose-tissue microvascular endothelial cells. 2-DG uptake was largely facilitated by the glucose transporters GLUT1 and GLUT3. Once in the cytosol, >80% of 2-DG became phosphorylated and ∼20% incorporated into glycogen, suggesting that transported glucose is readily accessible to cytosolic enzymes. Interestingly, a fraction of intracellular 2-DG was released over time (15-20% over 30 min) with slower kinetics than for uptake, involving GLUT3. In contrast to intracellular 2-DG, the released 2-DG was largely unphosphorylated. Glucose release involved endoplasmic reticulum-resident translocases/phosphatases and was stimulated by adrenaline, consistent with participation of glycogenolysis and glucose dephosphorylation. Surprisingly, the fluorescent glucose derivative 2-NBD-glucose (2-NBDG) entered cells largely via fluid phase endocytosis and exited by recycling. 2-NBDG uptake was insensitive to GLUT1/GLUT3 inhibition, suggesting poor influx across membranes. 2-NBDG recycling, but not 2-DG efflux, was sensitive to N-ethyl maleimide. In sum, by utilizing radioactive and fluorescent glucose derivatives, we identified two parallel routes of entry: uptake into the cytosol through dedicated glucose transporters and endocytosis. This reveals the complex glucose handling by endothelial cells that may contribute to glucose delivery to tissues.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | | | - Janice Pang
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - Felicia Ceban
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - Ekambir Saran
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - John H Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada, M5S 1A1.,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - Spencer A Freeman
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A1
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Physiology, University of Toronto, Toronto, ON, Canada, M5S 1A1
| |
Collapse
|