1
|
Lyu P, Gu X, Wang F, Sun H, Zhou Q, Yang S, Yuan W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark Res 2024; 12:73. [PMID: 39075612 PMCID: PMC11287900 DOI: 10.1186/s40364-024-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and are related to tumor proliferation, metastasis, relapse, and drug resistance. With the development of sequencing technologies, single-cell RNA sequencing has become a popular method for identifying CAFs in the tumor microenvironment. Whereas the drawbacks of CAFs, such as the lack of a spatial landscape, still exist, recent research has utilized spatial transcriptomics combined with single-cell RNA sequencing to address this issue. These multiomics analyses can resolve the single-cell resolution problem in spatial transcriptomics. In this review, we summarized the recent literature regarding the targeting of CAFs to address drug resistance, angiogenesis, metabolic reprogramming and metastasis in tumor tissue.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Wang Y, Li C, Jiang T, Yin Y, Wang Y, Zhao H, Yu L. A comprehensive exploration of twist1 to identify a biomarker for tumor immunity and prognosis in pan-cancer. Medicine (Baltimore) 2024; 103:e37790. [PMID: 38608058 PMCID: PMC11018223 DOI: 10.1097/md.0000000000037790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Twist1 has been identified as a critical gene in tumor, but current study of this gene remains limitative. This study aims to investigate its roles and potential mechanisms across pan-cancer. The study used various databases and computational techniques to analyze twist's RNA expression, clinical data, gene mutations, tumor stemness, tumor microenvironment, immune regulation. Furthermore, the experimental method of fluorescence staining was carried out to identify twist1 expression in various tumor masses. After analyzing the protein-protein interaction of TWIST, enrichment analysis and predictive potential drugs were performed, and molecular docking was conducted to validate. We found that twist1 expression was significantly higher in various types of cancer and associated with tumor stage, grade, and poor prognosis in multiple cancers. Differential expression of twist1 was linked to gene mutation, RNA modifications, and tumor stemness. Additionally, twist1 expression was positively associated with tumor immunoregulation and immune checkpoint. Salinomycin, klugline, isocephaelince, manassantin B, and pimonidazole are predictive potential drugs targeting TWIST1. This study revealed that twist1 plays an important role in tumor, and might be a curial marker in tumor diagnose and prognosis. The study also highlighted twist1 as a promising therapeutic target for cancer treatment and provided a foundation for future research.
Collapse
Affiliation(s)
- Yue Wang
- Department of Otolaryngology–Head and Neck Surgery, The first affiliated hospital of Ningbo University, Ningbo, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Chunhao Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Tianjiao Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Yiqiang Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Pathology, Jinan Fourth People’s Hospital, Jinan, China
| | - Yaowen Wang
- Department of Otolaryngology–Head and Neck Surgery, The first affiliated hospital of Ningbo University, Ningbo, China
| | - Hui Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Linyi People’s Hospital, Linyi, China
| | - Liang Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
3
|
Liu Y, Yang LY, Chen DX, Chang C, Yuan Q, Zhang Y, Cai Y, Wei WQ, Hao JJ, Wang MR. Tenascin-C as a potential biomarker and therapeutic target for esophageal squamous cell carcinoma. Transl Oncol 2024; 42:101888. [PMID: 38354632 PMCID: PMC10877408 DOI: 10.1016/j.tranon.2024.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
PURPOSE To establish a prognostic model of esophageal squamous cell carcinoma (ESCC) patients based on tenascin-C (TNC) expression level and clinicopathological characteristics, and to explore the therapeutic potential of TNC inhibition. METHODS The expression of TNC was detected using immunohistochemistry (IHC) in 326 ESCC specimens and 50 normal esophageal tissues. Prognostic factors were determined by Cox regression analyses and were incorporated to establish the nomogram. The effects of TNC knockdown on ESCC cells were assessed in vitro and in vivo. Transcriptome sequencing (RNA-seq) and gene set enrichment analysis (GSEA) were performed to reveal signaling pathways regulated by TNC knockdown. The therapeutic significance of TNC knockdown combined with small-molecule inhibitors on cell proliferation was examined. RESULTS TNC protein was highly expressed in 48.77 % of ESCC tissues compared to only 2 % in normal esophageal epithelia (p < 0.001). The established nomogram model, based on TNC expression, pT stage, and lymph node metastasis, showed good performance on prognosis evaluation. More importantly, the reduction of TNC expression inhibited tumor cell proliferation and xenograft growth, and mainly down-regulated signaling pathways involved in tumor growth, hypoxia signaling transduction, metabolism, infection, etc. Knockdown of TNC enhanced the inhibitory effect of inhibitors targeting ErbB, PI3K-Akt, Ras and MAPK signaling pathways. CONCLUSION The established nomogram may be a promising model for survival prediction in ESCC. Reducing TNC expression enhanced the sensitivity of ESCC cells to inhibitors of Epidermal Growth Factor Receptor (EGFR) and downstream signaling pathways, providing a novel combination therapy strategy.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ding-Xiong Chen
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chen Chang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Yuan
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Qiang Wei
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
4
|
Elkady N, Aldesoky AI, Allam DM. Can β-catenin, Tenascin and Fascin be potential biomarkers for personalized therapy in Gastric carcinoma? J Immunoassay Immunochem 2023; 44:396-417. [PMID: 37694977 DOI: 10.1080/15321819.2023.2251564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gastric carcinoma (GC) is one of the most prevalent cancers worldwide and the fourth leading cause of cancer-related death. Studying the molecular profile of GC is essential for developing targeted therapies. β-catenin, Tenascin, and Fascin expression are among the molecular abnormalities that are claimed to cause GC progression and chemoresistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate β-catenin, Tenascin, and Fascin expression and their possible roles as prognostic and predictive biomarkers in GC using immunohistochemistry. This retrospective study included 84 GC cases. Tissue microarrays were constructed, followed by β-catenin, Tenascin, and Fascin immunostaining. Their expression was assessed and compared with clinicopathological parameters and survival data. The study results revealed that β-catenin nucleocytoplasmic expression, positive Tenascin, and Fascin expressions were detected in 86.9%, 70%, and 59.5% of cases, respectively. Their expression was significantly associated with poor prognostic parameters, such as deeper tumor invasion, lymph node metastasis, advanced pathological stage, vascular invasion, positive omental nodules, poor response to chemotherapy, and short overall survival. Hence, nucleocytoplasmic β-catenin expression together with Tenascin and Fascin positivity can be potential prognostic and predictive markers, and they can be used as therapeutic targets for GC.
Collapse
Affiliation(s)
- Noha Elkady
- Pathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Amira I Aldesoky
- Clinical oncology and nuclear medicine department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Dina Mohamed Allam
- Pathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
5
|
Chen K, Xu J, Tong YL, Yan JF, Pan Y, Wang WJ, Zheng L, Zheng XX, Hu C, Hu X, Shen X, Chen W. Rab31 promotes metastasis and cisplatin resistance in stomach adenocarcinoma through Twist1-mediated EMT. Cell Death Dis 2023; 14:115. [PMID: 36781842 PMCID: PMC9925739 DOI: 10.1038/s41419-023-05596-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023]
Abstract
Stomach adenocarcinoma (STAD) is one of the leading causes of cancer-related death globally. Metastasis and drug resistance are two major causes of failures in current chemotherapy. Here, we found that the expression of Ras-related protein 31 (Rab31) is upregulated in human STAD tissues and high expression of Rab31 is closely associated with poor survival time. Furthermore, we revealed that Rab31 promotes cisplatin resistance and metastasis in human STAD cells. Reduced Rab31 expression induces tumor cell apoptosis and increases cisplatin sensitivity in STAD cells; Rab31 overexpression yielded the opposite result. Rab31 silencing prevented STAD cell migration, whereas the overexpression of Rab31 increased the metastatic potential. Further work showed that Rab31 mediates cisplatin resistance and metastasis via epithelial-mesenchymal transition (EMT) pathway. In addition, we found that both Rab31 overexpression and cisplatin treatment results in increased Twist1 expression. Depletion of Twist1 enhances sensitivity to cisplatin in STAD cells, which cannot be fully reversed by Rab31 overexpression. Rab31 could activate Twist1 by activating Stat3 and inhibiting Mucin 1 (MUC-1). The present study also demonstrates that Rab31 knockdown inhibited tumor growth in mice STAD models. These findings indicate that Rab31 is a novel and promising biomarker and potential therapeutic target for diagnosis, treatment and prognosis prediction in STAD patients. Our data not only identifies a novel Rab31/Stat3/MUC-1/Twist1/EMT pathway in STAD metastasis and drug resistance, but it also provides direction for the exploration of novel strategies to predict and treat STAD in the future.
Collapse
Affiliation(s)
- Ke Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China
| | - Ji Xu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Yu-Ling Tong
- Department of General Practice, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jia-Fei Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China
| | - Yu Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China
| | - Wei-Jia Wang
- Department of Pharmacy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, Zhejiang Province, China
| | - Li Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Xiao-Xiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Can Hu
- Department of Gastric Surgery, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang Province, China
| | - Xiu Hu
- Department of Pharmacy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, Zhejiang Province, China.
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China.
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China.
| |
Collapse
|
6
|
Sun H, Wang X, Wang X, Xu M, Sheng W. The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis 2022; 13:874. [PMID: 36244987 PMCID: PMC9573863 DOI: 10.1038/s41419-022-05320-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Despite advances in anticancer therapy, the prognosis of gastric cancer (GC) remains unsatisfactory. Research in recent years has shown that the malignant behavior of cancer is not only attributable to tumor cells but is partly mediated by the activity of the cancer stroma and controlled by various molecular networks in the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are one of the most abundant mesenchymal cell components of the stroma and extensively participate in the malignant development of GC malignancy. CAFs modulate the biological properties of tumor cells in multiple ways, including the secretion of various bioactive molecules that have effects through paracrine and autocrine signaling, the release of exosomes, and direct interactions, thereby affecting GC initiation and development. However, there is marked heterogeneity in the cellular origins, phenotypes, and functions of CAFs in the TME of GC. Furthermore, variations in factors, such as proteins, microRNAs, and lncRNAs, affect interactions between CAFs and GC cells, although, the potential molecular mechanisms are still poorly understood. In this review, we aim to describe the current knowledge of the cellular features and heterogeneity of CAFs and discuss how these factors are regulated in CAFs, with a focus on how they affect GC biology. This review provides mechanistic insight that could inform therapeutic strategies and improve the prognosis of GC patients.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Institute of Pathology, Fudan University, 200032, Shanghai, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Institute of Pathology, Fudan University, 200032, Shanghai, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Institute of Pathology, Fudan University, 200032, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
7
|
Salati M, Caputo F, Bocconi A, Cerri S, Baldessari C, Piacentini F, Dominici M, Gelsomino F. Successes and failures of angiogenesis blockade in gastric and gastro-esophageal junction adenocarcinoma. Front Oncol 2022; 12:993573. [PMID: 36212393 PMCID: PMC9540203 DOI: 10.3389/fonc.2022.993573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric and gastro-esophageal junction adenocarcinoma (GEA) remains a considerable major public health problem worldwide, being the fifth most common cancer with a fatality-to-case ratio that stands still at 70%. Angiogenesis, which is a well-established cancer hallmark, exerts a fundamental role in cancer initiation and progression and its targeting has been actively pursued as a promising therapeutic strategy in GEA. A wealth of clinical trials has been conducted, investigating anti-angiogenic agents including VEGF-directed monoclonal antibodies, small molecules tyrosine kinase inhibitors and VEGF-Trap agents both in the resectable and advanced setting, reporting controversial results. While phase III randomized trials testing the anti-VEGFR-2 antibody Ramucirumab and the selective VEGFR-2 tyrosine kinase inhibitor Apatinib demonstrated a significant survival benefit in later lines, the shift of angiogenesis inhibitors in the perioperative and first-line setting failed to improve patients' outcome in GEAs. The molecular landscape of disease, together with novel combinatorial strategies and biomarker-selected approaches are under investigation as key elements to the success of angiogenesis blockade in GEA. In this article, we critically review the existing literature on the biological rationale and clinical development of antiangiogenic agents in GEA, discussing major achievements, limitations and future developments, aiming at fully realizing the potential of this therapeutic approach.
Collapse
Affiliation(s)
- Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
- PhD Program Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Caputo
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Alessandro Bocconi
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Sara Cerri
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Cinzia Baldessari
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Federico Piacentini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Fabio Gelsomino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| |
Collapse
|
8
|
Ni J, Jiang M, Chen Y, Rao X, Jiang J, Zhang Z, Ju F, Guo D, Wang B, Teng L, Wang L, Zhou T, Zhuo W. Cadherin 11-mediated juxtacrine interaction of gastric cancer cells and fibroblasts promotes metastasis via YAP/tenascin-C signaling. Sci Bull (Beijing) 2022; 67:1026-1030. [PMID: 36546245 DOI: 10.1016/j.scib.2022.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/23/2021] [Accepted: 12/28/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Jiaojiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310002, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310002, China
| | - Mingchun Jiang
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310002, China
| | - Yanyan Chen
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Surgical Oncology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Xianping Rao
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310002, China
| | - Junjie Jiang
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Surgical Oncology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Zizhen Zhang
- Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310002, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310002, China
| | - Fangyu Ju
- Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310002, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310002, China
| | - Dongyang Guo
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310002, China; Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Boya Wang
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Surgical Oncology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Lisong Teng
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Surgical Oncology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310002, China.
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310002, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310002, China.
| | - Tianhua Zhou
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310002, China; Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada.
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310002, China.
| |
Collapse
|
9
|
Guan Z, Sun Y, Mu L, Jiang Y, Fan J. Tenascin-C promotes bladder cancer progression and its action depends on syndecan-4 and involves NF-κB signaling activation. BMC Cancer 2022; 22:240. [PMID: 35246056 PMCID: PMC8896393 DOI: 10.1186/s12885-022-09285-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/09/2022] [Indexed: 02/07/2023] Open
Abstract
Background Bladder Cancer (BCa) is a severe genitourinary tract disease with an uncertain pathology. Increasing evidence indicates that the tumor microenvironment plays a decisive role with respect to cancer progression, and that this is driven by tumor cell interactions with stromal components. Tenascin-C (TN-C) is an important extracellular matrix (ECM) component, which has been reported to be involved in other types of cancer, such as breast cancer. The expression of TN-C in BCa tissue has been reported to be positively associated with the BCa pathological grade, yet the presence of urine TN-C is considered as an independent risk factor for BCa. However, the role of TN-C in BCa progression is still unknow. Thus, the object of the present investigation is to determine the role of TN-C in BCa progression and the involved mechanism. Methods In this study, expression of TN-C in BCa tissue of Chinese local people was determined by IHC. Patients corresponding to tumor specimens were flowed up by telephone call to get their prognostic data and analyzed by using SPSS 19.0 statistic package. In vitro mechanistic investigation was demonstrated by QT-qPCR, Western Blot, Plasmid transfection to establishment of high/low TN-C-expression stable cell line, Boyden Chamber Assay, BrdU incorporation, Wound Healing, laser scanning confocal microscopy (LSCM) and ELISA. Results TN-C expression in BCa tissue increases with tumor grade and is an independent risk factor for BCa patient. The in vitro investigation suggested that TN-C enhances BCa cell migration, invasion, proliferation and contributes to the elevated expression of EMT-related markers by activating NF-κB signaling, the mechanism of which involving in syndecan-4. Conclusions Expression of TN-C in BCa tissues of Chinese local people is increased according to tumor grade and is an independent risk factor. TN-C mediates BCa cell malignant behavior via syndecan-4 and NF-κB signaling. Although the mechanisms through which syndecan-4 is associated with the activation of NF-κB signaling are unclear, the data presented herein provide a foundation for future investigations into the role of TN-C in BCa progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09285-x.
Collapse
Affiliation(s)
- Zhenfeng Guan
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.,Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, People's Republic of China
| | - Yi Sun
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Liang Mu
- Department of B ultrasound, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yazhuo Jiang
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
10
|
Kang X, Xu E, Wang X, Qian L, Yang Z, Yu H, Wang C, Ren C, Wang Y, Lu X, Xia X, Guan W, Qiao T. Tenascin-c knockdown suppresses vasculogenic mimicry of gastric cancer by inhibiting ERK- triggered EMT. Cell Death Dis 2021; 12:890. [PMID: 34588421 PMCID: PMC8481562 DOI: 10.1038/s41419-021-04153-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most common malignancies worldwide and vasculogenic mimicry (VM) is considered to be the leading cause for the failure of anti-angiogenesis therapy in advanced gastric cancer patients. In the present study, we investigate the role of tenascin-c (TNC) in the formation of VM in gastric cancer and found that TNC was upregulated in gastric cancer tissue than in the corresponding adjacent tissues and correlated with VM and poor prognosis of gastric cancer. Furthermore, knockdown of TNC significantly inhibited VM formation and proliferation of gastric cancer cells in vitro and in vivo, with a reduction in cell migration and invasion. Mechanistically, TNC knockdown suppressed the phosphorylation of ERK and subsequently inhibited the process of EMT, both of which play an important role in VM formation. Our results indicated that TNC plays an important role in VM formation in gastric cancer. Combining inhibition of TNC and ERK may be a potential therapeutic approach to inhibit gastric cancer growth and metastasis and decrease antiangiogenic therapeutic resistance.
Collapse
Affiliation(s)
- Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - En Xu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Lulu Qian
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Heng Yu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Chao Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Chuanfu Ren
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Yizhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China.
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China.
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China.
| | - Tong Qiao
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China.
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, 210008, Nanjing, China.
| |
Collapse
|
11
|
Wijetunga I, McVeigh LE, Charalambous A, Antanaviciute A, Carr IM, Nair A, Prasad KR, Ingram N, Coletta PL. Translating Biomarkers of Cholangiocarcinoma for Theranosis: A Systematic Review. Cancers (Basel) 2020; 12:E2817. [PMID: 33007872 PMCID: PMC7601719 DOI: 10.3390/cancers12102817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare disease with poor outcomes and limited research efforts into novel treatment options. A systematic review of CCA biomarkers was undertaken to identify promising biomarkers that may be used for theranosis (therapy and diagnosis). MEDLINE/EMBASE databases (1996-2019) were systematically searched using two strategies to identify biomarker studies of CCA. The PANTHER Go-Slim classification system and STRING network version 11.0 were used to interrogate the identified biomarkers. The TArget Selection Criteria for Theranosis (TASC-T) score was used to rank identified proteins as potential targetable biomarkers for theranosis. The following proteins scored the highest, CA9, CLDN18, TNC, MMP9, and EGFR, and they were evaluated in detail. None of these biomarkers had high sensitivity or specificity for CCA but have potential for theranosis. This review is unique in that it describes the process of selecting suitable markers for theranosis, which is also applicable to other diseases. This has highlighted existing validated markers of CCA that can be used for active tumor targeting for the future development of targeted theranostic delivery systems. It also emphasizes the relevance of bioinformatics in aiding the search for validated biomarkers that could be repurposed for theranosis.
Collapse
Affiliation(s)
- Imeshi Wijetunga
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Laura E. McVeigh
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Antonia Charalambous
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Agne Antanaviciute
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Ian M. Carr
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Amit Nair
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - K. Raj Prasad
- Department of Hepatobiliary and Transplant Surgery, St. James’s University Hospital, Leeds LS9 7TF, UK;
| | - Nicola Ingram
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| |
Collapse
|
12
|
Fujita M, Sasada M, Iyoda T, Fukai F. Involvement of Integrin-Activating Peptides Derived from Tenascin-C in Cancer Aggression and New Anticancer Strategy Using the Fibronectin-Derived Integrin-Inactivating Peptide. Molecules 2020; 25:E3239. [PMID: 32708610 PMCID: PMC7396993 DOI: 10.3390/molecules25143239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Matricellular proteins, which exist in association with the extracellular matrix (ECM) and ECM protein molecules, harbor functional sites within their molecular structures. These functional sites are released through proteolytic cleavage by inflammatory proteinases, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and the peptides containing these functional sites have unique biological activities that are often not detected in the parent molecules. We previously showed that tenascin-C (TNC) and plasma fibronectin (pFN), examples of matricellular proteins, have cryptic bioactive sites that have opposite effects on cell adhesion to the ECM. A peptide containing the bioactive site of TNC, termed TNIIIA2, which is highly released at sites of inflammation and in the tumor microenvironment (TME), has the ability to potently and persistently activate β1-integrins. In the opposite manner, the peptide FNIII14 containing the bioactive site of pFN has the ability to inactivate β1-integrins. This review highlights that peptide TNIIIA2 can act as a procancer factor and peptide FNIII14 can act as an anticancer agent, based on the regulation on β1-integrin activation. Notably, the detrimental effects of TNIIIA2 can be inhibited by FNIII14. These findings open the possibility for new therapeutic strategies based on the inactivation of β1-integrin by FNIII14.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| | - Manabu Sasada
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| |
Collapse
|
13
|
Moncho-Amor V, Pintado-Berninches L, Ibañez de Cáceres I, Martín-Villar E, Quintanilla M, Chakravarty P, Cortes-Sempere M, Fernández-Varas B, Rodriguez-Antolín C, de Castro J, Sastre L, Perona R. Role of Dusp6 Phosphatase as a Tumor Suppressor in Non-Small Cell Lung Cancer. Int J Mol Sci 2019; 20:ijms20082036. [PMID: 31027181 PMCID: PMC6514584 DOI: 10.3390/ijms20082036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
DUSP6/MKP3 is a dual-specific phosphatase that regulates extracellular regulated kinase ERK1/2 and ERK5 activity, with an increasingly recognized role as tumor suppressor. In silico studies from Gene expression Omnibus (GEO) and Cancer Genome atlas (TCGA) databases reveal poor prognosis in those Non-small cell lung cancer (NSCLC) patients with low expression levels of DUSP6. In agreement with these data, here we show that DUSP6 plays a major role in the regulation of cell migration, motility and tumor growth. We have found upregulation in the expression of several genes involved in epithelial to mesenchymal transition (EMT) in NSCLC-DUSP6 depleted cells. Data obtained in RNA-seq studies carried out in DUSP6 depleted cells identified EGFR, TGF-β and WNT signaling pathways and several genes such as VAV3, RUNXR2, LEF1, FGFR2 whose expression is upregulated in these cells and therefore affecting cellular functions such as integrin mediated cell adhesion, focal adhesion and motility. Furthermore, EGF signaling pathway is activated via ERK5 and not ERK1/2 and TGF-β via SMAD2/3 in DUSP6 depleted cells. In summary DUSP6 is a tumor suppressor in NSCLC and re-establishment of its expression may be a potential strategy to revert poor outcome in NSCLC patients.
Collapse
Affiliation(s)
- Verónica Moncho-Amor
- Department of Experimental Models of Human Diseases, Instituto de Investigaciones Biomédicas C.S.I.C./U.A.M, 28029 Madrid, Spain.
- The Francis Crick Institute, London NW1 1ST, UK.
| | - Laura Pintado-Berninches
- Department of Experimental Models of Human Diseases, Instituto de Investigaciones Biomédicas C.S.I.C./U.A.M, 28029 Madrid, Spain.
| | - Inmaculada Ibañez de Cáceres
- Cancer Epigenetics Laboratory, INGEMM, Hospital Universitario La Paz, 28046 Madrid, Spain.
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain.
| | - Ester Martín-Villar
- Departamento de Biotecnología-Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Madrid, Spain.
| | - Miguel Quintanilla
- Department of Experimental Models of Human Diseases, Instituto de Investigaciones Biomédicas C.S.I.C./U.A.M, 28029 Madrid, Spain.
| | - Probir Chakravarty
- Bioinformatics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - María Cortes-Sempere
- Department of Experimental Models of Human Diseases, Instituto de Investigaciones Biomédicas C.S.I.C./U.A.M, 28029 Madrid, Spain.
| | - Beatriz Fernández-Varas
- Department of Experimental Models of Human Diseases, Instituto de Investigaciones Biomédicas C.S.I.C./U.A.M, 28029 Madrid, Spain.
| | - Carlos Rodriguez-Antolín
- Cancer Epigenetics Laboratory, INGEMM, Hospital Universitario La Paz, 28046 Madrid, Spain.
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain.
| | - Javier de Castro
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain.
- Department of Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain.
| | - Leandro Sastre
- Department of Experimental Models of Human Diseases, Instituto de Investigaciones Biomédicas C.S.I.C./U.A.M, 28029 Madrid, Spain.
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain.
- CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - Rosario Perona
- Department of Experimental Models of Human Diseases, Instituto de Investigaciones Biomédicas C.S.I.C./U.A.M, 28029 Madrid, Spain.
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain.
- CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|