1
|
Li X. The Predictive Value of BUB1 in the Prognosis of Oral Squamous Cell Carcinoma. Int Dent J 2025; 75:1165-1175. [PMID: 39147662 PMCID: PMC11976542 DOI: 10.1016/j.identj.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumour in the oral cavity, and it is known for its poor prognosis. Budding uninhibited by benzimidazoles 1 (BUB1) may be related to cancer prognosis; however, the specific relationship between BUB1 and OSCC prognosis remains largely unexplored. METHODS The mRNA levels of BUB1 were analysed using data from the TCGA_OSCC and GSE23558 cohorts. OSCC samples from the TCGA_OSCC dataset were divided into low- and high-BUB1 expression groups based on the median BUB1 level. Furthermore, results of survival analysis, tumour mutation burden (TMB), gene set enrichment analysis (GSEA) pathways, and drug-sensitivity analysis were compared between the 2 groups. RESULTS Based on the data from the TCGA_OSCC and GSE23558 cohorts, BUB1 mRNA levels were significantly upregulated in OSCC tissues compared to healthy controls. Moreover, high expression of BUB1 may serve as an independent indicator of poor prognosis in OSCC. Additionally, patients with high BUB1 expression also exhibited increased levels of immune checkpoints and TMB, suggesting that patients with high BUB1 expression may benefit from immunotherapy. Mechanistically, transcription factors ZFP64, TCF3, and ZNF281 were found to potentially bind to the promoter region of BUB1, thereby regulating its gene expression. Furthermore, GSEA results showed that BUB1 expression was closely related to cell cycle and tumour-related pathways in OSCC. Drug-sensitivity analysis showed that patients with high BUB1 expression may be more sensitive to gemcitabine, paclitaxel, or imatinib. CONCLUSIONS Collectively, results demonstrated that high BUB1 levels may be related to a poor prognosis of OSCC, highlighting its potential as a novel prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Stomatology, Tianjin First Central Hospital, Nankai District, Tianjin, P.R. China.
| |
Collapse
|
2
|
Chen N, Wu S, Zhi K, Zhang X, Guo X. ZFP36L1 controls KLF16 mRNA stability in vascular smooth muscle cells during restenosis after vascular injury. J Mol Cell Cardiol 2024; 192:13-25. [PMID: 38653384 DOI: 10.1016/j.yjmcc.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The RNA-binding zinc finger protein 36 (ZFP36) family participates in numerous physiological processes including transition and differentiation through post-transcriptional regulation. ZFP36L1 is a member of the ZFP36 family. This study aimed to evaluate the role of ZFP36L1 in restenosis. We found that the expression of ZFP36L1 was inhibited in VSMC-phenotypic transformation induced by TGF-β, PDGF-BB, and FBS and also in the rat carotid injury model. In addition, we found that the overexpression of ZFP36L1 inhibited the proliferation and migration of VSMCs and promoted the expression of VSMC contractile genes; whereas ZFP36L1 interference promoted the proliferation and migration of VSMCs and suppressed the expression of contractile genes. Furthermore, the RNA binding protein immunoprecipitation and double luciferase reporter gene experiments shows that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16. Finally, our research results in the rat carotid balloon injury animal model further confirmed that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16 and further plays a role in vascular injury and restenosis in vivo.
Collapse
Affiliation(s)
- Ningheng Chen
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyong Wu
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Zhi
- Department of Vascular surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Xiaoping Zhang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Xueli Guo
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Tao Y, Gong Z, Shen S, Ding Y, Zan R, Zheng B, Sun W, Ma C, Shu M, Lu X, Liu H, Ni X, Liu H, Suo T. Fasting-induced RNF152 resensitizes gallbladder cancer cells to gemcitabine by inhibiting mTORC1-mediated glycolysis. iScience 2024; 27:109659. [PMID: 38706841 PMCID: PMC11068552 DOI: 10.1016/j.isci.2024.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Abnormal mTORC1 activation by the lysosomal Ragulator complex has been implicated in cancer and glycolytic metabolism associated with drug resistance. Fasting upregulates RNF152 and mediates the metabolic status of cells. We report that RNF152 regulates mTORC1 signaling by targeting a Ragulator subunit, p18, and attenuates gemcitabine resistance in gallbladder cancer (GBC). We detected levels of RNF152 and p18 in tissues and undertook mechanistic studies using activators, inhibitors, and lentivirus transfections. RNF152 levels were significantly lower in GBC than in adjacent non-cancer tissues. Fasting impairs glycolysis, induces gemcitabine sensitivity, and upregulates RNF152 expression. RNF152 overexpression increases the sensitivity of GBC cells to gemcitabine, whereas silencing RNF152 has the opposite effect. Fasting-induced RNF152 ubiquitinates p18, resulting in proteasomal degradation. RNF152 deficiency increases the lysosomal localization of p18 and increases mTORC1 activity, to promote glycolysis and decrease gemcitabine sensitivity. RNF152 suppresses mTORC1 activity to inhibit glycolysis and enhance gemcitabine sensitivity in GBC.
Collapse
Affiliation(s)
- Ying Tao
- Department of General Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Zijun Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng Shen
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaqi Ding
- Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine Central Laboratory, Shanghai, China
| | - Rui Zan
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bohao Zheng
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wentao Sun
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chaolin Ma
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Shu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Lu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Houbao Liu
- Department of General Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Biliary Tract Disease Institute, Fudan University, Shanghai, China
- The Center of Biliary Disease Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Han X, Wu W, Wang S. Krüppel-like factor 15 counteracts endoplasmic reticulum stress and suppresses lung fibroblast proliferation and extracellular matrix accumulation. Tissue Cell 2023; 84:102183. [PMID: 37531874 DOI: 10.1016/j.tice.2023.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The incidence of pulmonary fibrosis is on the rise, and existing treatments have limited efficacy in improving patient survival. The purpose of this study was to reveal the potential of Krüppel-like factor (KLF)15 activation in alleviating pulmonary fibrosis. Transforming growth factor beta (TGF-β) was utilized to induce lung fibroblasts to establish an in vitro model of pulmonary fibrosis. The impacts of TGF-β and KLF15 level on cell proliferation, migration, extracellular matrix (ECM) accumulation, and endoplasmic reticulum stress (ERS) were assessed. Additionally, tunicamycin, an ERS agonist, was used to investigate the role of ERS in KLF15 regulation. The results showed that KLF15 was dropped in response to TGF-β treatment. However, KLF15 overexpression reduced cell proliferation, migration, ECM accumulation, and ERS, alleviating the effects of TGF-β stimulation. Subsequent treatment with tunicamycin diminished the effects of KLF15 overexpression, demonstrating that ERS mediated the modulation of KLF15. KLF15 acts against ERS and suppresses excessive proliferation and ECM accumulation in lung fibroblast. These findings suggest that activating KLF15 is a promising strategy for alleviating pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiang Han
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| | - Weiqin Wu
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Shuming Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
5
|
Zhang Y, Yao C, Ju Z, Jiao D, Hu D, Qi L, Liu S, Wu X, Zhao C. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol 2023; 13:1080720. [PMID: 36761967 PMCID: PMC9905823 DOI: 10.3389/fonc.2023.1080720] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Krüppel-like factors (KLFs) are a group of DNA-binding transcriptional regulators with multiple essential functions in various cellular processes, including proliferation, migration, inflammation, and angiogenesis. The aberrant expression of KLFs is often found in tumor tissues and is essential for tumor development. At the molecular level, KLFs regulate multiple signaling pathways and mediate crosstalk among them. Some KLFs may also be molecular switches for specific biological signals, driving their transition from tumor suppressors to promoters. At the histological level, the abnormal expression of KLFs is closely associated with tumor cell stemness, proliferation, apoptosis, and alterations in the tumor microenvironment. Notably, the role of each KLF in tumors varies according to tumor type and different stages of tumor development rather than being invariant. In this review, we focus on the advances in the molecular biology of KLFs, particularly the regulations of several classical signaling pathways by these factors, and the critical role of KLFs in tumor development. We also highlight their strong potential as molecular targets in tumor therapy and suggest potential directions for clinical translational research.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Xueqing Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| |
Collapse
|