1
|
Guardiola-Ripoll M, Almodóvar-Payá C, Lubeiro A, Sotero A, Salvador R, Fuentes-Claramonte P, Salgado-Pineda P, Papiol S, Ortiz-Gil J, Gomar JJ, Guerrero-Pedraza A, Sarró S, Maristany T, Molina V, Pomarol-Clotet E, Fatjó-Vilas M. A functional neuroimaging association study on the interplay between two schizophrenia genome-wide associated genes (CACNA1C and ZNF804A). Eur Arch Psychiatry Clin Neurosci 2022; 272:1229-1239. [PMID: 35796825 DOI: 10.1007/s00406-022-01447-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/07/2022] [Indexed: 12/23/2022]
Abstract
The CACNA1C and the ZNF804A genes are among the most relevant schizophrenia GWAS findings. Recent evidence shows that the interaction of these genes with the schizophrenia diagnosis modulates brain functional response to a verbal fluency task. To better understand how these genes might influence the risk for schizophrenia, we aimed to study the interplay between CACNA1C and ZNF804A on working memory brain functional correlates. The analyses included functional and behavioural N-back task data (obtained from an fMRI protocol) and CACNA1C-rs1006737 and ZNF804A-rs1344706 genotypes for 78 healthy subjects and 78 patients with schizophrenia (matched for age, sex and premorbid IQ). We tested the effects of the epistasis between these genes as well as of the three-way interaction (CACNA1C × ZNAF804A × diagnosis) on working memory-associated activity (N-back: 2-back vs 1-back). We detected a significant CACNA1C × ZNAF804A interaction on working memory functional response in regions comprising the ventral caudate medially and within the left hemisphere, the superior and inferior orbitofrontal gyrus, the superior temporal pole and the ventral-anterior insula. The individuals with the GWAS-identified risk genotypes (CACNA1C-AA/AG and ZNF804A-AA) displayed a reduced working memory modulation response. This genotypic combination was also associated with opposite brain activity patterns between patients and controls. While further research will help to comprehend the neurobiological mechanisms of this interaction, our data highlight the role of the epistasis between CACNA1C and ZNF804A in the functional mechanisms underlying the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Alejandro Sotero
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Sergi Papiol
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Jordi Ortiz-Gil
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Hospital General de Granollers, Barcelona, Spain
| | - Jesús J Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- The Litwin-Zucker Alzheimer's Research Center, Manhasset, NY, USA
| | | | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Teresa Maristany
- Diagnostic Imaging Department, Hospital Sant Joan de Déu Research Foundation, Barcelona, Spain
| | - Vicente Molina
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
- Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Psychiatry Service, University Hospital of Valladolid, Valladolid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Wang Z, Chen W, Cao Y, Dou Y, Fu Y, Zhang Y, Luo X, Kang L, Liu N, Shi YS, Li CSR, Xu Y, Guo X, Luo X. An independent, replicable, functional and significant risk variant block at intron 3 of CACNA1C for schizophrenia. Aust N Z J Psychiatry 2022; 56:385-397. [PMID: 33938268 DOI: 10.1177/00048674211009595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Genome-wide association studies have identified a significant risk gene, CACNA1C, for schizophrenia. In this study, we comprehensively investigated a large set of CACNA1C single-nucleotide polymorphisms (SNPs) to identify the replicable risk alleles for schizophrenia and explore their biological functions. METHODS One Jewish (1044 cases vs 2052 controls), one European (1350 cases vs 1378 controls) and one exploratory African American samples (98 cases vs 20 controls) were analyzed to identify replicable single-nucleotide polymorphism-schizophrenia associations. The regulatory effects of risk alleles on CACNA1C messenger RNA expression were examined. The most robust risk tagSNP (rs1006737) was meta-analyzed on 17 studies (74,122 cases vs 109,062 controls), and associated with the gray matter volumes of seven subcortical structures in 38,258 Europeans, and the surface areas and thickness of 34 cortical regions in 33,992 Europeans and 2944 non-Europeans. RESULTS Forty-seven replicable risk single-nucleotide polymorphisms, including a 20-single-nucleotide polymorphism haplotype block, were identified in our samples (1.8 × 10-4 ⩽ p ⩽ 0.049). This variant block was consistently associated with schizophrenia across four independent Psychiatric Genomics Consortium cohorts (79,645 cases vs 109,590 controls; 2.5 × 10-17 ⩽ p ⩽ 0.017). This block showed significant expression quantitative trait loci in three independent European brain cohorts (5.1 × 10-12 ⩽ p ⩽ 8.3 × 10-3) and could be tagged by the most significant risk single-nucleotide polymorphism rs1006737. The minor allele A of rs1006737 significantly increased risk for schizophrenia across the Jewish and European samples (p = 0.029 and 0.004, respectively), and this association was highly significant in the meta-analysis (p = 1.62 × 10-42). This allele also significantly altered the CACNA1C messenger RNA expression in five brain regions (5.1 × 10-12 ⩽ p ⩽ 0.05), decreased the gray matter volume of thalamus (p = 0.010), the surface area of isthmus cingulate cortex (p = 0.013) and the thickness of transverse temporal and superior temporal sulcus cortexes (0.005 ⩽ p ⩽ 0.043). CONCLUSION We identified an independent, replicable, functional, and significant risk variant block at CACNA1C for schizophrenia, which could be tagged by the most robust risk marker rs1006737, suggesting an important role of CACNA1C in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Zuxing Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychosomatic Medicine of Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenzhong Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuping Cao
- Department of Psychiatry of the Second Xiangya Hospital, Central South University; China National Clinical Research Center on Mental Disorders, China National Technology Institute on Mental Disorders, Changsha, China
| | - Yikai Dou
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yingmei Fu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Department of Psychiatry, Tianjin Mental Health Center, Tianjin, China
| | - Xingqun Luo
- Department of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Diseases of Tibet Autonomous Region, Xizang Minzu University School of Medicine, Xiangyang, China
| | - Na Liu
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Stone Shi
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yifeng Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Guo
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingguang Luo
- Division of Psychiatric Genetics, Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
3
|
Chen M, Jiang Q, Zhang L. CACNA1C Gene rs1006737 Polymorphism Affects Cognitive Performance in Chinese Han Schizophrenia. Neuropsychiatr Dis Treat 2022; 18:1697-1704. [PMID: 35975220 PMCID: PMC9376000 DOI: 10.2147/ndt.s373492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the relationship between L-type calcium channel α1C subunit (CACNA1C) gene polymorphism and schizophrenia (SCZ) and cognitive function in the Han nationality, the main nationality in China. METHODS Genotyping of CACNA1C SNP (rs1006737, rs1024582, rs2007044) in SCZ patients (n = 312) and healthy controls (n = 305) was performed. Cognitive function was assessed in the SCZ patients using Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Then, the correlation between SNP and SCZ, as well as cognition, was calculated. RESULTS There was no significant difference in allele frequency and genotype distribution frequency of the three polymorphic loci of CACNA1C gene between the two groups. In cognitive tests, delayed memory scores in RBANS were significantly lower in rs1006737 "A" risk allele carriers than in non-carriers. CONCLUSION There is no significant difference in allele and genotype frequency of CANCA1C Gene rs1006737, rs1024582 and rs2007044 between the schizophrenia patients and healthy controls. The cognitive function of schizophrenia patients is correlated with the rs1006737, and the delayed memory of "A" allele carriers is significantly reduced.
Collapse
Affiliation(s)
- Mengyi Chen
- Department of Geriatric, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qi Jiang
- Department of Geriatric, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Geriatric, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Tomasi J, Zai CC, Zai G, Kennedy JL, Tiwari AK. Genetics of human startle reactivity: A systematic review to acquire targets for an anxiety endophenotype. World J Biol Psychiatry 2021; 22:399-427. [PMID: 33040669 DOI: 10.1080/15622975.2020.1834619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Startle response is an objective physiological measure integral to the human defense system and a promising target for endophenotype investigations of anxiety. Given the alterations in startle reactivity observed among anxiety and related disorders, we searched for genetic variants associated with startle reactivity as they may be further involved in pathological anxiety risk. METHODS A systematic literature review was performed to identify genetic variants associated with startle reactivity in humans, specifically baseline and fear- or anxiety-potentiated startle. RESULTS The polymorphisms Val66Met (rs6265) from brain-derived neurotrophic factor (BDNF), Val158Met (rs4680) from catechol-O-methyltransferase (COMT), and the serotonin transporter-linked polymorphic region (5-HTTLPR) from the serotonin transporter gene (SLC6A4) were most commonly studied in human startle. In addition, several other genetic variants have also been identified as potential candidates that warrant further research, especially given their novelty in in the context of anxiety. CONCLUSIONS Similar to psychiatric genetic studies, the studies on startle reactivity primarily focus on candidate genes and are plagued by non-replication. Startle reactivity is a promising endophenotype that requires concerted efforts to collect uniformly assessed, large, well-powered samples and hypothesis-free genome-wide strategies. To further support startle as an endophenotype for anxiety, this review suggests advanced genetic strategies for startle research.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,General Adult Psychiatry and Health Systems Division, CAMH, Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Rastogi A, Viani-Walsh D, Akbari S, Gall N, Gaughran F, Lally J. Pathogenesis and management of Brugada syndrome in schizophrenia: A scoping review. Gen Hosp Psychiatry 2020; 67:83-91. [PMID: 33065406 PMCID: PMC7537626 DOI: 10.1016/j.genhosppsych.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/28/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Excess cardiovascular morbidity and an increased prevalence of sudden cardiac death (SCD) contributes to premature mortality in schizophrenia. Brugada syndrome (BrS) is an important but underrecognized cause of SCD. It is more commonly seen in schizophrenia than in general population controls. METHODS We conducted a scoping review to describe the pathogenesis of BrS in schizophrenia and to identify the psychotropic medications that increase the risk of unmasking BrS and associated ventricular arrhythmias resulting in SCD. FINDINGS Schizophrenia and BrS share similar calcium channel abnormalities, which may result in aberrant myocardial conductivity. It remains uncertain if there is a genetic pre-disposition for BrS in a subset of patients with schizophrenia. However, the unmasking of Brugada ECG patterns with the use of certain antipsychotics and antidepressants increases the risk of precipitating SCD, independent of QT prolongation. CONCLUSIONS AND FUTURE DIRECTIONS Specific cardiology assessment and interventions may be required for the congenital or unmasked Brugada ECG pattern in schizophrenia. The current long-term standard of care for BrS is an implantable cardioverter defibrillator (ICD), but post-implantation psychological effects must be considered. Careful use of antipsychotic and other psychotropic medications is necessary to minimize proarrhythmic effects due to impact on cardiac sodium and calcium ion channels. When prescribing such drugs to patients with schizophrenia, clinicians should be mindful of the potentially fatal unmasking of Brugada ECG patterns and how to manage it. We present recommendations for psychiatrists managing this patient population.
Collapse
Affiliation(s)
- Anuj Rastogi
- Royal College of Surgeons in Ireland, School of Medicine, Dublin, Ireland.
| | - Dylan Viani-Walsh
- Royal College of Surgeons in Ireland, School of Medicine, Dublin, Ireland.
| | - Shareef Akbari
- Royal College of Surgeons in Ireland, School of Medicine, Dublin, Ireland.
| | - Nicholas Gall
- Department of Cardiology, King's College Hospital NHS Foundation Trust, United Kingdom.
| | - Fiona Gaughran
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience King's College London, United Kingdom.
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience King's College London, United Kingdom; Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; St Vincent's Hospital Fairview, Dublin, Ireland; Department of Psychiatry, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
6
|
Liu YP, Wu X, Xia X, Yao J, Wang BJ. The genome-wide supported CACNA1C gene polymorphisms and the risk of schizophrenia: an updated meta-analysis. BMC MEDICAL GENETICS 2020; 21:159. [PMID: 32770953 PMCID: PMC7414708 DOI: 10.1186/s12881-020-01084-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Background The CACNA1C gene was defined as a risk gene for schizophrenia in a large genome-wide association study of European ancestry performed by the Psychiatric Genomics Consortium. Previous meta-analyses focused on the association between the CACNA1C gene rs1006737 and schizophrenia. The present study focused on whether there was an ancestral difference in the effect of the CACNA1C gene rs1006737 on schizophrenia. rs2007044 and rs4765905 were analyzed for their effect on the risk of schizophrenia. Methods Pooled, subgroup, sensitivity, and publication bias analysis were conducted. Results A total of 18 studies met the inclusion criteria, including fourteen rs1006737 studies (15,213 cases, 19,412 controls), three rs2007044 studies (6007 cases, 6518 controls), and two rs4765905 studies (2435 cases, 2639 controls). An allele model study also related rs2007044 and rs4765905 to schizophrenia. The overall meta-analysis for rs1006737, which included the allele contrast, dominant, recessive, codominance, and complete overdominance models, showed significant differences between rs1006737 and schizophrenia. However, the ancestral-based subgroup analysis for rs1006737 found that the genotypes GG and GG + GA were only protective factors for schizophrenia in Europeans. In contrast, the rs1006737 GA genotype only reduced the risk of schizophrenia in Asians. Conclusions Rs1006737, rs2007044, and rs4765905 of the CACNA1C gene were associated with susceptibility to schizophrenia. However, the influence model for rs1006737 on schizophrenia in Asians and Europeans demonstrated both similarities and differences between the two ancestors.
Collapse
Affiliation(s)
- Yong-Ping Liu
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| |
Collapse
|
7
|
Dennison CA, Legge SE, Pardiñas AF, Walters JTR. Genome-wide association studies in schizophrenia: Recent advances, challenges and future perspective. Schizophr Res 2020; 217:4-12. [PMID: 31780348 DOI: 10.1016/j.schres.2019.10.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies (GWAS) have proved to be a powerful approach for gene discovery in schizophrenia; their findings have important implications not just for our understanding of the genetic architecture of the disorder, but for the potential applications of personalised medicine through improved classification and targeted interventions. In this article we review the current status of the GWAS literature in schizophrenia including functional annotation methods and polygenic risk scoring, as well as the directions and challenges of future research. We consider recent findings in East Asian populations and the advancements from trans-ancestry analysis, as well as the insights gained from research looking across psychiatric disorders.
Collapse
Affiliation(s)
- Charlotte A Dennison
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Jin L, An Z, Xu B, Mu D, Fu S, Hu H, Shi Y, Luo X, Yi Q. The association between rs12807809 polymorphism in neurogranin gene and risk of schizophrenia: A meta-analysis. Medicine (Baltimore) 2019; 98:e18518. [PMID: 31861040 PMCID: PMC6940187 DOI: 10.1097/md.0000000000018518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The correlation between single nucleotide polymorphism (SNP) rs12807809 in Neurogranin (NRGN) gene and Schizophrenia (SCZ) was investigated by several studies, whereas the results were conflicting. Thus, we performed the present meta-analysis to combine and analyze the available studies in order to provide a more accurate result on the association of rs12807809 polymorphism in NRGN gene and SCZ vulnerability. METHODS A comprehensive retrieval in PubMed, EMBASE, Web of Science, Cochrane Library and Wanfang was performed for relevant studies on the relationship of rs12807809 polymorphism and SCZ. Summary odds ratios (OR) with 95% confidence interval (95% CI) were calculated in allelic, homozygous, heterozygous, dominant and recessive model to appraise the association. RESULTS The meta-analysis included 8 studies containing 12552 SCZ cases and 34783 controls. The results showed a statistically significant correlation between SCZ and rs12807809 polymorphism in overall population in allelic model (OR = 1.10, 95%CI 1.04-1.17). However, subgroup analysis indicated the association only existed in Caucasians but not Asian. CONCLUSION The results of present meta-analysis suggested significant association between SNP rs12807809 in NRGN gene and SCZ susceptibility in Caucasians but not Asians.
Collapse
Affiliation(s)
- Lu Jin
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang
| | - Zhiguo An
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang
| | - Bin Xu
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang
| | - Daibin Mu
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang
| | - Songnian Fu
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang
| | - Hongxing Hu
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Luo
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang
| | - Qizhong Yi
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang
| |
Collapse
|
9
|
Sutterland AL, Blom MT, Ladee K, Lubbers JJM, Cohen D, de Haan L, Tan HL. Increased prevalence of ECG suspicious for Brugada Syndrome in recent onset schizophrenia spectrum disorders. Schizophr Res 2019; 210:59-65. [PMID: 31248748 DOI: 10.1016/j.schres.2019.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Schizophrenia is associated with an increased risk of sudden cardiac death, traditionally attributed to prolonged QTc interval and increased prevalence of cardiovascular risk factors. However, defective ion channels implicated in both schizophrenia and Brugada Syndrome (BrS) may be associated with an increased risk of cardiac arrhythmias. Moreover, these cardiac arrhythmias can be provoked by various drugs, including psychotropic drugs. OBJECTIVE To assess the prevalence of the occurrence of ECG suspicious for BrS (suspect BrS-ECG) and the prevalence of BrS in patients with recent onset schizophrenia spectrum disorders (SSD). METHODS In this case-control study, ECGs of 388 patients with recent onset SSD admitted between 2006 and 2015 and 844 healthy controls were made. All persons who had a suspect BrS-ECG were offered an ajmaline provocation test to diagnose or exclude BrS. Data on possible confounders were ascertained. Patients with and without suspect BrS-ECG were compared regarding clinical and ECG variables. RESULTS Suspect BrS-ECG was found in 33 patients (8.5%) and 13 healthy controls (1.5%), with an adjusted Odds Ratio of 3.5 (p < 0.0001). This finding was not explained by potential confounders such as gender, age, ethnicity, cannabis use, cardiovascular risk factors, medication use or serum electrolytes. BrS was confirmed in three patients and one control. CONCLUSION A considerable subset of patients with recent onset SSD have suspect BrS-ECG, extending earlier findings in patients with chronic schizophrenia. Screening for BrS in schizophrenia could be relevant both to prevent sudden cardiac death and to identify a subgroup of patients with possible ion-channel dysfunctioning.
Collapse
Affiliation(s)
- Arjen L Sutterland
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Early Psychosis Section, Amsterdam, the Netherlands.
| | - Marieke T Blom
- Amsterdam UMC, University of Amsterdam, Department of Cardiology, Heart Center, Amsterdam, the Netherlands
| | - Katinka Ladee
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Early Psychosis Section, Amsterdam, the Netherlands
| | - Jorieke J M Lubbers
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Early Psychosis Section, Amsterdam, the Netherlands
| | - Dan Cohen
- Mental Health Service North-Holland North, Department of Community Mental Health, Heerhugowaard, the Netherlands
| | - Lieuwe de Haan
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Early Psychosis Section, Amsterdam, the Netherlands
| | - Hanno L Tan
- Amsterdam UMC, University of Amsterdam, Department of Cardiology, Heart Center, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Zhu D, Yin J, Liang C, Luo X, Lv D, Dai Z, Xiong S, Fu J, Li Y, Lin J, Lin Z, Wang Y, Ma G. CACNA1C (rs1006737) may be a susceptibility gene for schizophrenia: An updated meta-analysis. Brain Behav 2019; 9:e01292. [PMID: 31033230 PMCID: PMC6576147 DOI: 10.1002/brb3.1292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Schizophrenia is a serious mental illness with a genetic predisposition. Genome-wide association studies (GWAS) have identified the α-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene as a significant risk gene for schizophrenia. However, there are inconsistent conclusions in case-control studies. METHODS We performed a comprehensive meta-analysis of all available samples from existing studies under four different genetic models (recessive model, dominant model, additive model and allele model) to further confirm whether CACNA1C rs1006737 is an authentic risk single nucleotide polymorphism (SNP) for schizophrenia. RESULTS A statistically significant difference under the four models (all p < 0.05) was observed by pooling nine Asian and European studies, including a total of 12,744 cases and 16,460 controls. For European-decent samples, a significant difference was identified between patients and controls for the four models (all p < 0.05). We observed a significant difference between patients and controls for the recessive model and allele model (GG vs. GA + AA: p < 0.00001; G vs. A: p < 0.00001) using a fixed effect model, but the dominant model (GG + GA vs. AA: OR: p = 0.15) and additive model (GG vs. AA: p = 0.11) showed no significant difference between patients and controls in the Asian samples. CONCLUSION Our findings provide important evidence for the establishment of CACNA1C as a susceptibility gene for schizophrenia across world populations, but its roles in the pathogenesis of schizophrenia need to be further investigated.
Collapse
Affiliation(s)
- Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoda Ma
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Meller T, Schmitt S, Stein F, Brosch K, Mosebach J, Yüksel D, Zaremba D, Grotegerd D, Dohm K, Meinert S, Förster K, Redlich R, Opel N, Repple J, Hahn T, Jansen A, Andlauer TFM, Forstner AJ, Heilmann-Heimbach S, Streit F, Witt SH, Rietschel M, Müller-Myhsok B, Nöthen MM, Dannlowski U, Krug A, Kircher T, Nenadić I. Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modulation of attention in healthy subjects. Schizophr Res 2019; 208:67-75. [PMID: 31076262 DOI: 10.1016/j.schres.2019.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/05/2019] [Accepted: 04/20/2019] [Indexed: 12/30/2022]
Abstract
Schizotypy is a multidimensional risk phenotype distributed in the general population, constituting of subclinical, psychotic-like symptoms. It is associated with psychosis proneness, and several risk genes for psychosis are associated with schizotypy in non-clinical populations. Schizotypy might also modulate cognitive abilities as it is associated with attentional deficits in healthy subjects. In this study, we tested the hypothesis that established genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737 are associated with psychometric schizotypy and that schizotypy mediates their effect on attention or vice versa. In 615 healthy subjects from the FOR2107 cohort study, we analysed the genetic risk variants ZNF804A rs1344706 and CACNA1C rs1006737, psychometric schizotypy (schizotypal personality questionnaire-brief SPQB), and a neuropsychological measure of sustained and selective attention (d2 test). ZNF804A rs1344706 C (non-risk) alleles were significantly associated with higher SPQ-B Cognitive-Perceptual subscores in women and with attention deficits in both sexes. This schizotypy dimension also mediated the effect of ZNF804A on attention in women, but not in men. CACNA1C rs1006737-A showed a significant sex-modulated negative association with Interpersonal schizotypy only in men, and no effect on attention. Our multivariate model demonstrates differential genetic contributions of two psychosis risk genes to dimensions of schizotypy and, partly, to attention. This supports a model of shared genetic influence between schizotypy and cognitive functions impaired in schizophrenia.
Collapse
Affiliation(s)
- Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany.
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Johannes Mosebach
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Dilara Yüksel
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; SRI International, Center for Health Sciences, Bioscience Division, 333 Ravenswood Avenue, 94025 Menlo Park, CA, USA
| | - Dario Zaremba
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Dominik Grotegerd
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Förster
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Tim Hahn
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany; Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Till F M Andlauer
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany; Institute of Human Genetics, Philipps-Universität Marburg, Baldingerstraße, 35033 Marburg, Germany; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstr. 40, 4056 Basel, Switzerland
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Fabian Streit
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Stephanie H Witt
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Bertram Müller-Myhsok
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany; Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| |
Collapse
|
12
|
Mallas E, Carletti F, Chaddock CA, Shergill S, Woolley J, Picchioni MM, McDonald C, Toulopoulou T, Kravariti E, Kalidindi S, Bramon E, Murray R, Barker GJ, Prata DP. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder1. GENES BRAIN AND BEHAVIOR 2016; 16:479-488. [DOI: 10.1111/gbb.12355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Affiliation(s)
- E. Mallas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine; Imperial College London; London
| | - F. Carletti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Department of Neuroradiology, John Radcliffe Hospital; Oxford University Hospitals NHS Trust; Oxford
| | - C. A. Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
| | - S. Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
| | - J. Woolley
- Psychological Medicine; Royal Brompton & Harefield NHS Trust; London
| | - M. M. Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- St. Andrew's Academic Department; St Andrew's Healthcare; Northampton UK
| | - C. McDonald
- Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences; National University of Ireland Galway; Galway Ireland
| | - T. Toulopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Department of Psychology; The University of Hong Kong; Hong Kong Special Administrative Region
| | - E. Kravariti
- Department of Psychology, Institute of Psychiatry; Psychology & Neuroscience King's College London
| | - S. Kalidindi
- Department of Psychology, Institute of Psychiatry; Psychology & Neuroscience King's College London
| | - E. Bramon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Mental Health Neurosciences Research Department, Division of Psychiatry; University College London
| | - R. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
| | - G. J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
| | - D. P. Prata
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
13
|
Huang L, Mo Y, Sun X, Yu H, Li H, Wu L, Li M. The impact of CACNA1C allelic variation on regional gray matter volume in Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:396-401. [PMID: 26756527 DOI: 10.1002/ajmg.b.32418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/23/2015] [Indexed: 11/08/2022]
Abstract
The SNP rs1006737 in CACNA1C gene has been significantly associated with psychiatric disorders (e.g., schizophrenia and bipolar disorder) in European populations. In Han Chinese, rs1006737 is also strongly associated with schizophrenia, although the effects of the psychosis risk SNP on related brain functions and structures in this population remain unclear. Here, we examined the association of rs1006737 with gray matter volume in a sample of 278 healthy Han Chinese. A whole-brain voxel-based morphometry (VBM) analysis revealed a significant association in the region around right superior occipital gyrus (family-wise error corrected, P = 0.023). Our data provides initial evidence for the involvement of this psychosis genetic risk locus in brain structure variations in Chinese population, and calls for further investigations.
Collapse
Affiliation(s)
- Liang Huang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yin Mo
- Imaging Center, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Xuejin Sun
- Imaging Center, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Hualin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lichuan Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
14
|
Abstract
We reconsider delusions in terms of a "doxastic shear pin", a mechanism that errs so as to prevent the destruction of the machine (brain) and permit continued function (in an attenuated capacity). Delusions may disable flexible (but energetically expensive) inference. With each recall, delusions may be reinforced further and rendered resistant to contradiction. We aim to respond to deficit accounts of delusions - that delusions are only a problem without any benefit - by considering delusion formation and maintenance in terms of predictive coding. We posit that brains conform to a simple computational principle: to minimize prediction error (the mismatch between prior top-down expectation and current bottom-up input) across hierarchies of brain regions and psychological representation. Recent data suggest that delusions may form in the absence of constraining top-down expectations. Then, once formed, they become new priors that motivate other beliefs, perceptions, and actions by providing strong (sometimes overriding) top-down expectation. We argue that delusions form when the shear-pin breaks, permitting continued engagement with an overwhelming world, and ongoing function in the face of paralyzing difficulty. This crucial role should not be ignored when we treat delusions: we need to consider how a person will function in the world without them..
Collapse
Affiliation(s)
- S.K. Fineberg
- Yale University, Department of Psychiatry, Ribicoff Research Facility. 34 Park Street, New Haven, CT, USA 06519
| | - P.R. Corlett
- Yale University, Department of Psychiatry, Ribicoff Research Facility. 34 Park Street, New Haven, CT, USA 06519
| |
Collapse
|
15
|
Wolthusen RPF, Hass J, Walton E, Turner JA, Rössner V, Sponheim SR, Ho BC, Holt DJ, Gollub RL, Calhoun V, Ehrlich S. Genetic underpinnings of left superior temporal gyrus thickness in patients with schizophrenia. World J Biol Psychiatry 2015:1-11. [PMID: 26249676 PMCID: PMC4795983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
OBJECTIVES Schizophrenia is a highly disabling psychiatric disorder with a heterogeneous phenotypic appearance. We aimed to further the understanding of some of the underlying genetics of schizophrenia, using left superior temporal gyrus (STG) grey matter thickness reduction as an endophenoptype in a genome-wide association (GWA) study. METHODS Structural magnetic resonance imaging (MRI) and genetic data of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia were used to analyse the interaction effects between 1,067,955 single nucleotide polymorphisms (SNPs) and disease status on left STG thickness in 126 healthy controls and 113 patients with schizophrenia. We next used a pathway approach to detect underlying pathophysiological pathways that may be related to schizophrenia. RESULTS No SNP by diagnosis interaction effect reached genome-wide significance (5 × 10-8) in our GWA study, but 10 SNPs reached P-values less than 10-6. The most prominent pathways included those involved in insulin, calcium, PI3K-Akt and MAPK signalling. CONCLUSIONS Our strongest findings in the GWA study and pathway analysis point towards an involvement of glucose metabolism in left STG thickness reduction in patients with schizophrenia only. These results are in line with recently published studies, which showed an increased prevalence of psychosis among patients with metabolic syndrome-related illnesses including diabetes.
Collapse
Affiliation(s)
- Rick P F Wolthusen
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus of the Technische Universität Dresden , Dresden , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Association between ANKK1 (rs1800497) and LTA (rs909253) Genetic Variants and Risk of Schizophrenia. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26114114 DOI: 10.1155/2015/821827]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Limited research has assessed associations between schizophrenia and genetic variants of the ankyrin repeat and kinase domain containing 1 (ANKK1) and lymphotoxin-alpha (LTA) genes among individuals of Middle Eastern ancestry. Here we present the first association study investigating the ANKK1 rs1800497 (T>C) and LTA rs909253 (A>G) single-nucleotide polymorphisms in an Egyptian population. Among 120 patients with DSM-IV and PANSS (Positive and Negative Syndrome Scale) assessments of schizophrenia and 100 healthy controls, we determined the genotypes for the polymorphisms using endonuclease digestion of amplified genomic DNA. Results confirmed previous findings from different ethnic populations, in that the rs1800497 and rs909253 polymorphisms were both associated with risk of schizophrenia. Differences between the genotypes of cases and controls were strongly significant (P = 0.0005 for rs1800497 and P = 0.001 for rs909253). The relative risk to schizophrenia was 1.2 (P = 0.01) for the C allele and 0.8 (P = 0.04) for the G allele. The CC, GG, and combined CC/AA genotypes were all more frequent in cases than in controls. These results support an association between ANKK1 and LTA genetic markers and vulnerability to schizophrenia and show the potential influence of just one copy of the mutant C or G allele in the Egyptian population.
Collapse
|
17
|
Arab AH, Elhawary NA. Association between ANKK1 (rs1800497) and LTA (rs909253) Genetic Variants and Risk of Schizophrenia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821827. [PMID: 26114114 PMCID: PMC4465678 DOI: 10.1155/2015/821827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023]
Abstract
Limited research has assessed associations between schizophrenia and genetic variants of the ankyrin repeat and kinase domain containing 1 (ANKK1) and lymphotoxin-alpha (LTA) genes among individuals of Middle Eastern ancestry. Here we present the first association study investigating the ANKK1 rs1800497 (T>C) and LTA rs909253 (A>G) single-nucleotide polymorphisms in an Egyptian population. Among 120 patients with DSM-IV and PANSS (Positive and Negative Syndrome Scale) assessments of schizophrenia and 100 healthy controls, we determined the genotypes for the polymorphisms using endonuclease digestion of amplified genomic DNA. Results confirmed previous findings from different ethnic populations, in that the rs1800497 and rs909253 polymorphisms were both associated with risk of schizophrenia. Differences between the genotypes of cases and controls were strongly significant (P = 0.0005 for rs1800497 and P = 0.001 for rs909253). The relative risk to schizophrenia was 1.2 (P = 0.01) for the C allele and 0.8 (P = 0.04) for the G allele. The CC, GG, and combined CC/AA genotypes were all more frequent in cases than in controls. These results support an association between ANKK1 and LTA genetic markers and vulnerability to schizophrenia and show the potential influence of just one copy of the mutant C or G allele in the Egyptian population.
Collapse
Affiliation(s)
- Arwa H. Arab
- Department of Psychology, Faculty of Arts and Humanities, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Nasser A. Elhawary
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca 21955, Saudi Arabia
- Department of Molecular Genetics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|