1
|
Deng Y, Zheng J, Li F, Zou H, Tian S, Zhao Z, Zeng H, Zhai Y, Deng W, Zhang J, Lu M, Jia B, Lin Y. Hepatocyte-Enriched miRNA-193b-3p Promotes Hepatitis B Virus Replication by Dual Activation of Viral Core Promoter Activity and Autophagy Induction by Targeting IGF-1R. J Med Virol 2025; 97:e70330. [PMID: 40195593 DOI: 10.1002/jmv.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Hepatitis B virus (HBV) infection is a principal cause of severe liver disease in humans and is associated with increased levels of specific serum or intracellular microRNAs (miRNAs). Among these, miR-193b-3p is a liver-enriched miRNA; however, its role in HBV replication remains unknown. This study aimed to investigate the influence of chronic HBV infection on miR-193b-3p levels in the peripheral blood and liver tissues of patients with chronic hepatitis B (CHB), evaluate the effect of miR-193b-3p on HBV replication both in vitro and in vivo, and elucidate the potential underlying mechanisms. We showed that hepatic miR-193b-3p levels in patients with CHB were significantly elevated compared with those in healthy controls. Ectopic expression of miR-193b-3p significantly enhanced HBV replication and transcription in different hepatoma cell lines. Furthermore, we identified IGF-1R as a direct target through which miR-193b-3p regulates HBV replication. Mechanistically, miR-193b-3p increased HBV core promoter activity via the IGF-1R/FXRα axis, thereby enhancing HBV transcription. Additionally, miR-193b-3p increased IGF-1R/Akt/MDM2/p53 signaling-mediated autophagy induction, which in turn facilitated increased HBV post-transcriptional activity. Collectively, hepatocyte-enriched miR-193b-3p exerts a proviral effect on HBV replication through dual synergistic mechanisms, offering novel insights into its role in HBV replication and potential therapeutic implications in CHB infection.
Collapse
Affiliation(s)
- Yingying Deng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, China
| | - Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, China
- Center for Laboratory Medicine, Sichuan Tianfu New Area People's Hospital, No. 33, Section 3, Fumin Road, Huayang Street, Chengdu, China
| | - Fahong Li
- Department of Infectious Diseases, Huashan hospital, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai, China
| | - Hecun Zou
- College of Pharmacy, Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, China
| | - Shijun Tian
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, China
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, China
| | - Huaqing Zeng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, China
| | - Wanyu Deng
- College of Life Science, Shangrao Normal University, No. 401, Zhimin Avenue, Shangrao, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan hospital, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen, Germany
| | - Bei Jia
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, China
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, China
| |
Collapse
|
2
|
Muchtar A, Onomura D, Ding D, Nishitsuji H, Shimotohno K, Okada S, Ueda K, Watashi K, Wakita T, Iida K, Yoshiyama H, Iizasa H. MicroRNA-3145 as a potential therapeutic target for hepatitis B virus: inhibition of viral replication via downregulation of HBS and HBX. Front Microbiol 2025; 15:1499216. [PMID: 39834379 PMCID: PMC11743939 DOI: 10.3389/fmicb.2024.1499216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Current treatments for hepatitis B virus (HBV), such as interferons and nucleic acid analogs, have limitations due to side effects like depression and the development of drug-resistant mutants, highlighting the need for new therapeutic approaches. In this study, we identified microRNA-3145 (miR-3145) as a host-derived miRNA with antiviral activity that is upregulated in primary hepatocytes during HBV infection. The expression of its precursor, pri-miR-3145, increased in response to the the virus infection, and miR-3145 downregulated the hepatitis B virus S (HBS) antigen and hepatitis B virus X (HBX), thereby inhibiting viral replication. The binding site for miR-3145 was located in the HBV polymerase (pol) region, as experimentally confirmed. Moreover, overexpression of HBS and HBX induced pri-miR-3145 expression through endoplasmic reticulum stress. The expression of pri-miR-3145 showed a strong correlation with the Nance-Horan syndrome-like 1 (NHSL1) gene, as it is encoded within an intron of NHSL1, and higher NHSL1 expression in hepatocellular carcinoma patients with HBV infection was associated with better prognosis. These findings suggest that miR-3145-3p, along with small molecules targeting its binding sites, holds promise as a potential therapeutic candidate for HBV treatment.
Collapse
Affiliation(s)
- Amrizal Muchtar
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
- Faculty of Medicine, Universitas Muslim Indonesia, Makassar, Indonesia
| | - Daichi Onomura
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
- Division of Virology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Dan Ding
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hironori Nishitsuji
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kunitada Shimotohno
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Shunpei Okada
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kei Iida
- Faculty of Science and Engineering, Kindai University, Higashiōsaka, Japan
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
3
|
Ren J, Cheng S, Ren F, Gu H, Wu D, Yao X, Tan M, Huang A, Chen J. Epigenetic regulation and its therapeutic potential in hepatitis B virus covalently closed circular DNA. Genes Dis 2025; 12:101215. [PMID: 39534573 PMCID: PMC11555349 DOI: 10.1016/j.gendis.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 11/16/2024] Open
Abstract
Human hepatitis B virus (HBV) infection is the major cause of acute and chronic hepatitis B, liver cirrhosis, and hepatocellular carcinoma. Although the application of prophylactic vaccination programs has successfully prevented the trend of increasing HBV infection prevalence, the number of HBV-infected people remains very high. Approved therapeutic management efficiently suppresses viral replication; however, HBV infection is rarely completely resolved. The major reason for therapeutic failure is the persistence of covalently closed circular DNA (cccDNA), which forms viral minichromosomes by combining with histone and nonhistone proteins in the nucleus. Increasing evidence indicates that chromatin-modifying enzymes, viral proteins, and noncoding RNAs are essential for modulating the function of cccDNA. Therefore, a deeper understanding of the regulatory mechanism underlying cccDNA transcription will contribute to the development of a cure for chronic hepatitis B. This review summarizes the current knowledge of cccDNA biology, the regulatory mechanisms underlying cccDNA transcription, and novel anti-HBV approaches for eliminating cccDNA transcription.
Collapse
Affiliation(s)
- Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Huiying Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
4
|
Song H, Zhang Q, Fang G, Luo X, Wu D, Li H, Zhou K, Zhao X, Xu F, Zhang Y, Huang A. Unraveling the Mechanisms of MicroRNA in Suppressing Hepatitis B Virus Progression: A Comprehensive Review for Designing Treatment Strategies. HEPATITIS MONTHLY 2024; 24. [DOI: 10.5812/hepatmon-144239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 01/02/2025]
Abstract
: Liver cancer and cirrhosis caused by the Hepatitis B virus (HBV) remain significant global health challenges due to the virus's high prevalence and contagious nature. Hepatitis B virus can be transmitted through various means, leading to mild or severe liver disease. Although an effective prophylactic vaccine is available, it offers limited benefits for those already chronically infected. Current treatments often fail to consistently eliminate the virus and can cause severe adverse effects. In response to these challenges, researchers have begun exploring microRNAs (miRNAs) as novel therapeutic targets. Studying miRNA-virus interactions presents a promising opportunity to identify potential therapeutic targets. By manipulating host miRNAs, researchers aim to enhance antiviral defenses, restore cellular balance, and prevent viral replication. The text concludes by highlighting the potential for personalized medicine in Hepatitis B treatment, guided by individual miRNA profiles. Numerous studies have been conducted to understand how different miRNAs inhibit HBV replication, paving the way for the development of innovative and effective therapeutic strategies.
Collapse
|
5
|
Zulian V, Fiscon G, Paci P, Garbuglia AR. Hepatitis B Virus and microRNAs: A Bioinformatics Approach. Int J Mol Sci 2023; 24:17224. [PMID: 38139051 PMCID: PMC10743825 DOI: 10.3390/ijms242417224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In recent decades, microRNAs (miRNAs) have emerged as key regulators of gene expression, and the identification of viral miRNAs (v-miRNAs) within some viruses, including hepatitis B virus (HBV), has attracted significant attention. HBV infections often progress to chronic states (CHB) and may induce fibrosis/cirrhosis and hepatocellular carcinoma (HCC). The presence of HBV can dysregulate host miRNA expression, influencing several biological pathways, such as apoptosis, innate and immune response, viral replication, and pathogenesis. Consequently, miRNAs are considered a promising biomarker for diagnostic, prognostic, and treatment response. The dynamics of miRNAs during HBV infection are multifaceted, influenced by host variability and miRNA interactions. Given the ability of miRNAs to target multiple messenger RNA (mRNA), understanding the viral-host (human) interplay is complex but essential to develop novel clinical applications. Therefore, bioinformatics can help to analyze, identify, and interpret a vast amount of miRNA data. This review explores the bioinformatics tools available for viral and host miRNA research. Moreover, we introduce a brief overview focusing on the role of miRNAs during HBV infection. In this way, this review aims to help the selection of the most appropriate bioinformatics tools based on requirements and research goals.
Collapse
Affiliation(s)
- Verdiana Zulian
- Virology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy;
| | - Giulia Fiscon
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (P.P.)
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, 00185 Rome, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (P.P.)
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, 00185 Rome, Italy
| | - Anna Rosa Garbuglia
- Virology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy;
| |
Collapse
|
6
|
Emerging Therapies for Chronic Hepatitis B and the Potential for a Functional Cure. Drugs 2023; 83:367-388. [PMID: 36906663 DOI: 10.1007/s40265-023-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/13/2023]
Abstract
Worldwide, an estimated 296 million people are living with chronic hepatitis B virus (HBV) infection, with a significant risk of morbidity and mortality. Current therapy with pegylated interferon (Peg-IFN) and indefinite or finite therapy with nucleoside/nucleotide analogues (Nucs) are effective in HBV suppression, hepatitis resolution, and prevention of disease progression. However, few achieve hepatitis B surface antigen (HBsAg) loss (functional cure), and relapse often occurs after the end of therapy (EOT) because these agents have no direct effect on durable template: covalently closed circular DNA (cccDNA) and integrated HBV DNA. Hepatitis B surface antigen loss rate increases slightly by adding or switching to Peg-IFN in Nuc-treated patients and this loss rate greatly increases up to 39% in 5 years with finite Nuc therapy with currently available Nuc(s). For this, great effort has been made to develop novel direct-acting antivirals (DAAs) and immunomodulators. Among the DAAs, entry inhibitors and capsid assembly modulators have little effect on reducing HBsAg levels; small interfering RNA, antisense oligonucleotides, and nucleic acid polymers in combination with Peg-IFN and Nuc may reduce HBsAg levels significantly, even a rate of HBsAg loss sustained for > 24 weeks after EOT up to 40%. Novel immunomodulators, including T-cell receptor agonists, check-point inhibitors, therapeutic vaccines, and monoclonal antibodies may restore HBV-specific T-cell response but not sustained HBsAg loss. The safety issues and the durability of HBsAg loss warrant further investigation. Combining agents of different classes has the potential to enhance HBsAg loss. Compounds directly targeting cccDNA would be more effective but are still in the early stage of development. More effort is required to achieve this goal.
Collapse
|
7
|
Nakanishi A, Okumura H, Hashita T, Yamashita A, Nishimura Y, Watanabe C, Kamimura S, Hayashi S, Murakami S, Ito K, Iwao T, Ikeda A, Hirose T, Sunazuka T, Tanaka Y, Matsunaga T. Ivermectin Inhibits HBV Entry into the Nucleus by Suppressing KPNA2. Viruses 2022; 14:2468. [PMID: 36366568 PMCID: PMC9695645 DOI: 10.3390/v14112468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatitis B virus (HBV) specifically infects human hepatocytes and increases the risks of cirrhosis and liver cancer. Currently, nucleic acid analogs are the main therapeutics for chronic hepatitis caused by HBV infection. Although nucleic acid analogs can eliminate HBV DNA by inhibiting HBV reverse transcriptase, they cannot lead to negative conversion of covalently closed circular DNA (cccDNA) and hepatitis B surface antigen (HBsAg). In this study, we revealed that the antifilarial drug ivermectin suppresses HBV production by a different mechanism from the nucleic acid analog entecavir or Na+ taurocholate co-transporting polypeptide-mediated entry inhibitor cyclosporin A. Ivermectin reduced the levels of several HBV markers, including HBsAg, in HBV-infected human hepatocellular carcinoma cells (HepG2-hNTCP-C4 cells) and humanized mouse hepatocytes (PXB hepatocytes). In addition, ivermectin significantly decreased the expression of HBV core protein and the nuclear transporter karyopherin α2 (KPNA2) in the nuclei of HepG2-hNTCP-C4 cells. Furthermore, depletion of KPNA1-6 suppressed the production of cccDNA. These results suggest that KPNA1-6 is involved in the nuclear import of HBV and that ivermectin suppresses the nuclear import of HBV by inhibiting KPNA2. This study demonstrates the potential of ivermectin as a novel treatment for hepatitis B.
Collapse
Affiliation(s)
- Anna Nakanishi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hiroki Okumura
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Aya Yamashita
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuka Nishimura
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Chihiro Watanabe
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sakina Kamimura
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sanae Hayashi
- Department of Virology and Liver Unit, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
- Department of Gastroenterology and Hepatology, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shuko Murakami
- Department of Virology and Liver Unit, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Kyoko Ito
- Department of Virology and Liver Unit, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Akari Ikeda
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
- Department of Gastroenterology and Hepatology, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
8
|
Gao L, Yang J, Feng J, Liu Z, Dong Y, Luo J, Yu L, Wang J, Fan H, Ma W, Liu T. PreS/2-21-Guided siRNA Nanoparticles Target to Inhibit Hepatitis B Virus Infection and Replication. Front Immunol 2022; 13:856463. [PMID: 35572586 PMCID: PMC9098953 DOI: 10.3389/fimmu.2022.856463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
A viable therapy is needed to overcome the deadlock of the incurable chronic hepatitis B (CHB). The prolonged existence of covalently closed circular DNA (cccDNA) and integrated HBV DNA in the nucleus of hepatocytes is the root cause of CHB. As a result, it is critical to successfully suppress HBV DNA replication and eliminate cccDNA. RNA interference has been proven in recent research to silence the expression of target genes and thereby decrease HBV replication. However, siRNA is susceptible to be degraded by RNA enzymes in vivo, making it difficult to deliver successfully and lacking of tissue targeting. To exploit the advantages of siRNA technology while also overcoming its limitations, we designed a new strategy and prepared biomimetic nanoparticles that were directed by PreS/2-21 peptides and precisely loaded HBV siRNA. Experiments on these nanoparticles in vitro and in vivo revealed that they are tiny, stable, safe and highly targetable, with high inhibitory effects on HBV DNA, pgRNA, cccDNA, HBeAg and HBsAg. PreS/2-21-directed nanoparticles loaded with HBV gene therapy drugs are expected to be promising for the treatment of CHB.
Collapse
Affiliation(s)
- Lixia Gao
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jie Yang
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jutao Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziying Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Dong
- Institute of Antibody Engineering, School of Laboratory Medicine & Biotechnology, Southern Medical University, Guangzhou, China
| | - Jiangyan Luo
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liangzhentian Yu
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiamei Wang
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongying Fan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weifeng Ma
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Tiancai Liu, ; Weifeng Ma,
| | - Tiancai Liu
- Institute of Antibody Engineering, School of Laboratory Medicine & Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Tiancai Liu, ; Weifeng Ma,
| |
Collapse
|
9
|
Li C, Wang R, Wu A, Yuan T, Song K, Bai Y, Liu X. SARS-COV-2 as potential microRNA sponge in COVID-19 patients. BMC Med Genomics 2022; 15:94. [PMID: 35461273 PMCID: PMC9034446 DOI: 10.1186/s12920-022-01243-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small non-coding RNA that can downregulate their targets by selectively binding to the 3′ untranslated region (3′UTR) of most messenger RNAs (mRNAs) in the human genome. MiRNAs can interact with other molecules such as viruses and act as a mediator for viral infection. In this study, we examined whether, and to what extent, the SARS-CoV-2 virus can serve as a “sponge” for human miRNAs. Results We identified multiple potential miRNA/target pairs that may be disrupted during SARS-CoV-2 infection. Using miRNA expression profiles and RNA-seq from published studies, we further identified a highly confident list of 5 miRNA/target pairs that could be disrupted by the virus’s miRNA sponge effect, namely hsa-miR-374a-5p/APOL6, hsa-let-7f-1-3p/EIF4A2, hsa-miR-374a-3p/PARP11, hsa-miR-548d-3p/PSMA2 and hsa-miR-23b-3p/ZNFX1 pairs. Using single-cell RNA-sequencing based data, we identified two important miRNAs, hsa-miR-302c-5p and hsa-miR-16-5p, to be potential virus targeting miRNAs across multiple cell types from bronchoalveolar lavage fluid samples. We further validated some of our findings using miRNA and gene enrichment analyses and the results confirmed with findings from previous studies that some of these identified miRNA/target pairs are involved in ACE2 receptor network, regulating pro-inflammatory cytokines and in immune cell maturation and differentiation. Conclusion Using publicly available databases and patient-related expression data, we found that acting as a “miRNA sponge” could be one explanation for SARS-CoV-2-mediated pathophysiological changes. This study provides a novel way of utilizing SARS-CoV-2 related data, with bioinformatics approaches, to help us better understand the etiology of the disease and its differential manifestation across individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01243-7.
Collapse
Affiliation(s)
- Chang Li
- USF Genomics and College of Public Health, University of South Florida, Tampa, FL, USA.
| | | | | | - Tina Yuan
- The Roeper School, Birmingham, MI, USA
| | | | - Yongsheng Bai
- Next-Gen Intelligent Science Training, Ann Arbor, MI, USA. .,Department of Biology, Eastern Michigan University, Ypsilanti, MI, 48197, USA.
| | - Xiaoming Liu
- USF Genomics and College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
10
|
5' preS1 mutations to prevent large envelope protein expression from hepatitis B virus genotype A or genotype D markedly increase polymerase-envelope fusion protein. J Virol 2022; 96:e0172321. [PMID: 35019714 PMCID: PMC8906437 DOI: 10.1128/jvi.01723-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) large (L) envelope protein is translated from 2.4-kb RNA. It contains preS1, preS2, and S domains and is detected in Western blot as p39 and gp42. The 3.5-kb pregenomic RNA produces core and polymerase (P) proteins. We generated L-minus mutants of a genotype A clone and a genotype D clone from 1.1mer or 1.3mer construct, with the former overproducing pregenomic RNA. Surprisingly, mutating preS1 ATG codon(s) or introducing a nonsense mutation soon afterwards switched secreted p39/gp42 into p41/p44 doublet, with its amount further increased by a nonsense mutation in the core gene. A more downstream preS1 nonsense mutation prevented p41/p44 production. Tunicamycin treatment confirmed p44 as glycosylated form of p41. In this regard splicing of 3.5-kb RNA to generate nt2447-nt2902 junction for genotype D enables translation of p43, with N-terminal 47 residues of P protein fused to C-terminal 371 residues of L protein. Indeed p41/p44 were detectable by an antibody against N-terminus of P protein, and eliminated by a nonsense mutation at 5' P gene or a point mutation to prevent that splicing. Therefore, lost L (and core) protein expression from 1.1mer or 1.3mer construct markedly increased p41/p44 (p43), the P-L fusion protein. Co-transfection with an expression construct for L/M proteins reversed high extracellular p41/p44 associated with L-minus mutants, suggesting that L protein retains p43 in wild-type HBV to promote its intracellular degradation. Considering that p43 lacks N-terminal preS1 sequence critical for receptor binding, its physiological significance during natural infection and therapeutic potential warrant further investigation. IMPORTANCE The large (L) envelope protein of hepatitis B virus (HBV) is translated from 2.4-kb RNA and detected in Western blot as p39 and gp42. Polymerase (P) protein is expressed at a low level from 3.5-kb RNA. The major spliced form of 3.5-kb RNA will produce a fusion protein between the first 47 residues of P protein and a short irrelevant sequence, although also at a low level. Another spliced form has the same P protein sequence fused to L protein missing its first 18 residues. We found that some point mutations to eliminate L and core protein expression from overlength HBV DNA constructs converted p39/gp42 into p41/gp44, which turned out to be that P-L fusion protein. Thus, the P-L fusion protein can be expressed at extremely high level when L protein expression is prevented. The underlying mechanism and functional significance of this variant form of L protein warrant further investigation.
Collapse
|
11
|
Zanganeh S, Goodarzi N, Doroudian M, Movahed E. Potential COVID-19 therapeutic approaches targeting angiotensin-converting enzyme 2; An updated review. Rev Med Virol 2021; 32:e2321. [PMID: 34958163 DOI: 10.1002/rmv.2321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
COVID-19 has spread swiftly throughout the world posing a global health emergency. The significant numbers of deaths attributed to this pandemic have researchers battling to understand this new, dangerous virus. Researchers are looking to find possible treatment regimens and develop effective therapies. This study aims to provide an overview of published scientific information on potential treatments, emphasizing angiotensin-converting enzyme II (ACE2) inhibitors as one of the most important drug targets. SARS-CoV-2 receptor-binding domain (RBD); as a viral attachment or entry inhibitor against SARS-CoV-2, human recombinant soluble ACE2; as a genetically modified soluble form of ACE2 to compete with membrane-bound ACE2, and microRNAs (miRNAs); as a negative regulator of the expression of ACE2/TMPRSS2 to inhibit SARS-CoV2 entry into cells, are the potential therapeutic approaches discussed thoroughly in this article. This review provides the groundwork for the ongoing development of therapeutic agents and effective treatments against SARS-COV-2.
Collapse
Affiliation(s)
- Saba Zanganeh
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, New Year, USA
| |
Collapse
|
12
|
Малыгина АА, Белая ЖЕ, Никитин АГ, Кошкин ФА, Ситкин ИИ, Лапшина АМ, Хандаева ПМ, Луценко АС, Трухина ДА, Мельниченко ГА. [Differences in plasma miRNA levels in inferior petrosal sinus samples of patients with ACTH-dependent Cushing's syndrome]. PROBLEMY ENDOKRINOLOGII 2021; 67:18-30. [PMID: 35018758 PMCID: PMC9753808 DOI: 10.14341/probl12817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND For the last decades microRNAs (miR) have proven themselves as novel biomarkers for various types of diseases. Identification of specific circulating microRNA panel that differ patient with Cushing's disease (CD) and ectopic ACTH syndrome (EAS) could improve the diagnostic procedure. AIM to evaluate the differences in miR levels in plasma samples drained from inferior petrosal sinuses in patients with CD and EAS. MATERIALS AND METHODS single-center, case-control study: we enrolled 24 patients with ACTH-dependent Cushing's syndrome (CS) requiring bilateral inferior petrosal sinus sampling (BIPSS). Among them 12 subjects were confirmed as CD (males=2, females=10; median age 46,5 [IR 33,8;53,5]) and 12 as EAS (males=4, females=8, median age 54 [IR 38,75;60,75]). BIPSS was performed through a percutaneous bilateral approach. Once catheters were properly placed, blood samples were withdrawn simultaneously from each petrosal sinus and a peripheral vein. Plasma samples from both sinuses were centrifuged and then stored at -80 C. MiRNA isolation from plasma was carried out by an miRneasy Plasma/Serum Kit (Qiagen, Germany) on the automatic QIAcube station according to the manufacturer protocol. To prevent degradation, we added 1 unit of RiboLock Rnase Inhibitor (Thermo Fisher Scientific, USA) per 1 μL of RNA solution. The concentration of total RNA in the aqueous solution was evaluated on a NanoVue Plus spectrophotometer (GE Healthcare, USA). The libraries were prepared by the QIAseq miRNA Library Kit following the manufacturer standard protocols. MiR expression was then analyzed by sequencing on Illumina NextSeq 500 (Illumina, USA). RESULTS 108 miRNAs were differently expressed (p <0,05) in inferior petrosal sinus samples of patients with CD vs EAS. We divided these miRNAs into 3 groups based on the significance of the results. The first group consisted of samples with the highest levels of detected miR in both groups. Four miRNAs were included: miR-1203 was downregulated in CD vs EAS - 36.74 (p=0,013), and three other were upregulated in CD vs EAS: miR-383-3p 46.36 (p=0,01), miR-4290 6.84 (p=0,036), miR-6717-5p 4.49 (p=0,031). This miRs will be validated in larger cohorts using RT-qPCR. CONCLUSION Plasma miR levels differ in inferior petrosal samples taken from patients with CD vs EAS. These miRs need to be validated by different methods and in peripheral plasma samples in order to be used as potentially non-invasive biomarkers to differentiate ACTH-dependent CS.
Collapse
Affiliation(s)
- А. А. Малыгина
- Национальный медицинский исследовательский центр эндокринологии
| | - Ж. Е. Белая
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - И. И. Ситкин
- Национальный медицинский исследовательский центр эндокринологии
| | - А. М. Лапшина
- Национальный медицинский исследовательский центр эндокринологии
| | - П. М. Хандаева
- Национальный медицинский исследовательский центр эндокринологии
| | - А. С. Луценко
- Национальный медицинский исследовательский центр эндокринологии
| | - Д. А. Трухина
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
13
|
Jiang Y, Han Q, Zhao H, Zhang J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:435-450. [PMID: 34046368 PMCID: PMC8147889 DOI: 10.2147/jhc.s307962] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy, and the hepatitis B virus (HBV) is its major pathogenic factor. Over the past decades, it has been confirmed that HBV infection could promote disease progression through a variety of mechanisms, ultimately leading to the malignant transformation of liver cells. Many factors have been identified in the pathogenesis of HBV-associated HCC (HBV-HCC), including HBV gene integration, genomic instability caused by mutation, and activation of cancer-promoting signaling pathways. As research in the progression of HBV-HCC progresses, the role of many new mechanisms, such as epigenetics, exosomes, autophagy, metabolic regulation, and immune suppression, is also being continuously explored. The occurrence of HBV-HCC is a complex process caused by interactions across multiple genes and multiple steps, where the synergistic effects of various cancer-promoting mechanisms accelerate the process of disease evolution from inflammation to tumorigenesis. In this review, we aim to provide a brief overview of the mechanisms involved in the occurrence and development of HBV-HCC, which may contribute to a better understanding of the role of HBV in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| |
Collapse
|
14
|
Chu H, Wang J, Wang Q, Chen J, Li J, Li H, Zhang L. Protective Effect of n-Butanol Extract from Viola yedoensis on Immunological Liver Injury. Chem Biodivers 2021; 18:e2001043. [PMID: 33929783 DOI: 10.1002/cbdv.202001043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/29/2021] [Indexed: 01/17/2023]
Abstract
Viola yedoensis Makino was used to treat inflammation, viral hepatitis, acute pyogenic infection, and ulcerative carbuncles. However, the protective effect on immunological liver injury (ILI) of V. yedoensis had been rarely reported. This study aimed to explore the protective effect of n-butanol extract (BE) from V. yedoensis on ILI in vitro and in vivo. In vitro, the BE significantly inhibited the secretions of Hepatitis B surface antigen (HBsAg) and Hepatitis B e antigen (HBeAg) in the HepG2.2.15 cells and the replication of HBV DNA. The research data in vivo revealed that the BE reduced the levels of alanine transaminase (ALT), aspartate transaminase (AST), and methane dicarboxylic aldehyde (MDA) in liver tissues of the ConA-induced mice, while increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and the effective contents of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and the BE could ameliorate liver histological lesions. These results motivated a further investigation into the chemical constituents of BE. Four coumarins (esculetin, prionanthoside, cichoriin, and esculin) and one flavonoid (quercetin-3-O-galactoside) were isolated from the BE by silica gel column chromatography and recrystallization, of which structures were eventually confirmed by 1 H-NMR, 13 C-NMR, and MS.
Collapse
Affiliation(s)
- Haiqing Chu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Jiexin Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Qian Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Jie Chen
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Jiaoning Li
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Hangying Li
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China.,Ningxia Engineering and Technology Research Center for Modernization of Chinese Medicine, Yinchuan, 750004, P. R. China
| | - Liming Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China.,Ningxia Engineering and Technology Research Center for Modernization of Chinese Medicine, Yinchuan, 750004, P. R. China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, 750004, P. R. China
| |
Collapse
|
15
|
Li Z, Ma L, Di L, Lin X. MicroRNA‑1271‑5p alleviates the malignant development of hepatitis B virus‑mediated liver cancer via binding to AQP5. Mol Med Rep 2021; 23:386. [PMID: 33760167 PMCID: PMC7986005 DOI: 10.3892/mmr.2021.12025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatitis B virus (HBV) is a leading cause of liver-related cancer. Progress has been made on the study of microRNA (miRNA or miR) function in HBV-related liver cancer. Hence, the objective of the present study was to determine the role and functional mechanism of miR-1271-5p in HBV-associated liver cancer. miR-1271-5p and aquaporin 5 (AQP5) expression at the mRNA level were measured by reverse transcription-quantitative PCR (RT-qPCR). The levels of hepatitis B e-antigen (HBeAg), hepatitis B surface antigen (HBsAg) and HBV DNA were assessed by ELISA or qPCR. Cell viability, apoptosis, migration and invasion were detected by Cell Counting Kit-8, flow cytometry or Transwell assay. The interaction of miR-1271-5p and AQP5 was predicted by TargetScan, and verified by Dual-luciferase reporter assay and RNA binding protein immunoprecipitation assay. The protein levels of AQP5, Bax, Bcl-2, cleaved-caspase-3 and proliferating cell nuclear antigen were quantified by western blot analysis. Nude mouse tumorigenicity assay was conducted to examine the role of miR-1271-5p in vivo. miR-1271-5p was downregulated, while AQP5 was upregulated in HBV-related liver cancer cells and tissues. Overexpression of miR-1271-5p or AQP5 knockdown inhibited the levels of HBeAg, HBsAg and HBV DNA, blocked cell viability, migration and invasion, and induced apoptosis. AQP5 was confirmed to be a direct target of miR-1271-5p, and miR-1271-5p exerted its role through targeting AQP5. Overexpression of miR-1271-5p impeded tumor growth in vivo by weakening the expression of AQP5. In conclusion, miR-1271-5p blocked the progression of HBV-induced liver cancer by competitively targeting AQP5.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, P.R. China
| | - Lin Ma
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Lingling Di
- Department of General Surgery, Central Hospital of Xinwen Mining Group Co., Ltd., Tai'an, Shandong 271000, P.R. China
| | - Xutao Lin
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| |
Collapse
|
16
|
Kalhori MR, Saadatpour F, Arefian E, Soleimani M, Farzaei MH, Aneva IY, Echeverría J. The Potential Therapeutic Effect of RNA Interference and Natural Products on COVID-19: A Review of the Coronaviruses Infection. Front Pharmacol 2021; 12:616993. [PMID: 33716745 PMCID: PMC7953353 DOI: 10.3389/fphar.2021.616993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus was reported for the first time in Wuhan, Hubei Province, China, and causes respiratory infection. This pandemic pneumonia killed about 1,437,835 people out of 61,308,161cases up to November 27, 2020. The disease's main clinical complications include fever, recurrent coughing, shortness of breath, acute respiratory syndrome, and failure of vital organs that could lead to death. It has been shown that natural compounds with antioxidant, anticancer, and antiviral activities and RNA interference agents could play an essential role in preventing or treating coronavirus infection by inhibiting the expression of crucial virus genes. This study aims to introduce a summary of coronavirus's genetic and morphological structure and determine the role of miRNAs, siRNAs, chemical drugs, and natural compounds in stimulating the immune system or inhibiting the virus's structural and non-structural genes that are essential for replication and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hosien Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
17
|
Wicik Z, Eyileten C, Jakubik D, Simões SN, Martins DC, Pavão R, Siller-Matula JM, Postula M. ACE2 Interaction Networks in COVID-19: A Physiological Framework for Prediction of Outcome in Patients with Cardiovascular Risk Factors. J Clin Med 2020; 9:E3743. [PMID: 33233425 PMCID: PMC7700637 DOI: 10.3390/jcm9113743] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease 2019; COVID-19) is associated with adverse outcomes in patients with cardiovascular disease (CVD). The aim of the study was to characterize the interaction between SARS-CoV-2 and Angiotensin-Converting Enzyme 2 (ACE2) functional networks with a focus on CVD. METHODS Using the network medicine approach and publicly available datasets, we investigated ACE2 tissue expression and described ACE2 interaction networks that could be affected by SARS-CoV-2 infection in the heart, lungs and nervous system. We compared them with changes in ACE-2 networks following SARS-CoV-2 infection by analyzing public data of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). This analysis was performed using the Network by Relative Importance (NERI) algorithm, which integrates protein-protein interaction with co-expression networks. We also performed miRNA-target predictions to identify which miRNAs regulate ACE2-related networks and could play a role in the COVID19 outcome. Finally, we performed enrichment analysis for identifying the main COVID-19 risk groups. RESULTS We found similar ACE2 expression confidence levels in respiratory and cardiovascular systems, supporting that heart tissue is a potential target of SARS-CoV-2. Analysis of ACE2 interaction networks in infected hiPSC-CMs identified multiple hub genes with corrupted signaling which can be responsible for cardiovascular symptoms. The most affected genes were EGFR (Epidermal Growth Factor Receptor), FN1 (Fibronectin 1), TP53, HSP90AA1, and APP (Amyloid Beta Precursor Protein), while the most affected interactions were associated with MAST2 and CALM1 (Calmodulin 1). Enrichment analysis revealed multiple diseases associated with the interaction networks of ACE2, especially cancerous diseases, obesity, hypertensive disease, Alzheimer's disease, non-insulin-dependent diabetes mellitus, and congestive heart failure. Among affected ACE2-network components connected with the SARS-Cov-2 interactome, we identified AGT (Angiotensinogen), CAT (Catalase), DPP4 (Dipeptidyl Peptidase 4), CCL2 (C-C Motif Chemokine Ligand 2), TFRC (Transferrin Receptor) and CAV1 (Caveolin-1), associated with cardiovascular risk factors. We described for the first time miRNAs which were common regulators of ACE2 networks and virus-related proteins in all analyzed datasets. The top miRNAs regulating ACE2 networks were miR-27a-3p, miR-26b-5p, miR-10b-5p, miR-302c-5p, hsa-miR-587, hsa-miR-1305, hsa-miR-200b-3p, hsa-miR-124-3p, and hsa-miR-16-5p. CONCLUSION Our study provides a complete mechanistic framework for investigating the ACE2 network which was validated by expression data. This framework predicted risk groups, including the established ones, thus providing reliable novel information regarding the complexity of signaling pathways affected by SARS-CoV-2. It also identified miRNAs that could be used in personalized diagnosis in COVID-19.
Collapse
Affiliation(s)
- Zofia Wicik
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre 09606-045, Brazil; (Z.W.); (D.C.M.J.); (R.P.)
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
| | - Sérgio N. Simões
- Federal Institute of Education, Science and Technology of Espírito Santo, Serra, Espírito Santo 29056-264, Brazil;
| | - David C. Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre 09606-045, Brazil; (Z.W.); (D.C.M.J.); (R.P.)
| | - Rodrigo Pavão
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre 09606-045, Brazil; (Z.W.); (D.C.M.J.); (R.P.)
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna,1090 Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
| |
Collapse
|
18
|
Huang T, Pu Q, Zhou C, Lin P, Gao P, Zhang X, Chu Y, Yue B, Wu M. MicroRNA-302/367 Cluster Impacts Host Antimicrobial Defense via Regulation of Mitophagic Response Against Pseudomonas aeruginosa Infection. Front Immunol 2020; 11:569173. [PMID: 33117356 PMCID: PMC7576609 DOI: 10.3389/fimmu.2020.569173] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Mitophagy has recently been implicated in bacterial infection but the underlying mechanism remains largely unknown. Here, we uncover a role of microRNA-302/367 cluster in regulating mitophagy and its associated host response against bacterial infection. We demonstrate that miR-302/367 cluster expression was significantly increased after Pseudomonas aeruginosa infection. Enhanced expression of miR-302/367 cluster accelerated the mitophagic response in macrophages, thus increasing clearance of invading P. aeruginosa by regulating production of reactive oxygen species (ROS), while application of miR-302/367 cluster inhibitors decreased bacterial clearance. Blocking mitophagy with siRNA against mitophagy receptor prohibitin 2 (PHB2) reduced the effect of miR-302/367 cluster on induction of mitophagy and its-associated P. aeruginosa elimination. In addition, we found that miR-302/367 cluster also increased bacterial clearance in mouse model. Mechanistically, we illustrate that miR-302/367 cluster binds to the 3′-untranslated region of nuclear factor kappa B (NF-κB), a negative regulator of mitophagy, accelerated the process of mitophagy by inhibiting NF-κB. Furthermore, inhibition of NF-κB in macrophages attenuated the ROS or cytokines production and may reduce cell injury by P. aeruginosa infection to maintain cellular homeostasis. Collectively, our findings elucidate that miR-302/367 cluster functions as potent regulators in mitophagy-mediated P. aeruginosa elimination and pinpoint an unexpected functional link between miRNAs and mitophagy.
Collapse
Affiliation(s)
- Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
19
|
Duraisamy GS, Bhosale D, Lipenská I, Huvarova I, Růžek D, Windisch MP, Miller AD. Advanced Therapeutics, Vaccinations, and Precision Medicine in the Treatment and Management of Chronic Hepatitis B Viral Infections; Where Are We and Where Are We Going? Viruses 2020; 12:v12090998. [PMID: 32906840 PMCID: PMC7552065 DOI: 10.3390/v12090998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The management of chronic hepatitis B virus (CHB) infection is an area of massive unmet clinical need worldwide. In spite of the development of powerful nucleoside/nucleotide analogue (NUC) drugs, and the widespread use of immune stimulators such as interferon-alpha (IFNα) or PEGylated interferon-alpha (PEG-IFNα), substantial improvements in CHB standards of care are still required. We believe that the future for CHB treatment now rests with advanced therapeutics, vaccination, and precision medicine, if all are to bring under control this most resilient of virus infections. In spite of a plethora of active drug treatments, anti-viral vaccinations and diagnostic techniques, the management of CHB infection remains unresolved. The reason for this is the very complexity of the virus replication cycle itself, giving rise to multiple potential targets for therapeutic intervention some of which remain very intractable indeed. Our review is focused on discussing the potential impact that advanced therapeutics, vaccinations and precision medicine could have on the future management of CHB infection. We demonstrate that advanced therapeutic approaches for the treatment of CHB, in the form of gene and immune therapies, together with modern vaccination strategies, are now emerging rapidly to tackle the limitations of current therapeutic approaches to CHB treatment in clinic. In addition, precision medicine approaches are now gathering pace too, starting with personalized medicine. On the basis of this, we argue that the time has now come to accelerate the design and creation of precision therapeutic approaches (PTAs) for CHB treatment that are based on advanced diagnostic tools and nanomedicine, and which could maximize CHB disease detection, treatment, and monitoring in ways that could genuinely eliminate CHB infection altogether.
Collapse
Affiliation(s)
- Ganesh Selvaraj Duraisamy
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Dattatry Bhosale
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Ivana Lipenská
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Ivana Huvarova
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Daniel Růžek
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 České Budějovice, Czech Republic
| | - Marc P. Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Korea;
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon 305-350, Korea
| | - Andrew D. Miller
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Černá Pole, CZ-61300 Brno, Czech Republic
- KP Therapeutics (Europe) s.r.o., Purkyňova 649/127, CZ-61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
20
|
Chow JTS, Salmena L. Prediction and Analysis of SARS-CoV-2-Targeting MicroRNA in Human Lung Epithelium. Genes (Basel) 2020; 11:E1002. [PMID: 32858958 PMCID: PMC7565861 DOI: 10.3390/genes11091002] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus, is responsible for the coronavirus disease 2019 (COVID-19) pandemic of 2020. Experimental evidence suggests that microRNA can mediate an intracellular defence mechanism against some RNA viruses. The purpose of this study was to identify microRNA with predicted binding sites in the SARS-CoV-2 genome, compare these to their microRNA expression profiles in lung epithelial tissue and make inference towards possible roles for microRNA in mitigating coronavirus infection. We hypothesize that high expression of specific coronavirus-targeting microRNA in lung epithelia may protect against infection and viral propagation, conversely, low expression may confer susceptibility to infection. We have identified 128 human microRNA with potential to target the SARS-CoV-2 genome, most of which have very low expression in lung epithelia. Six of these 128 microRNA are differentially expressed upon in vitro infection of SARS-CoV-2. Additionally, 28 microRNA also target the SARS-CoV genome while 23 microRNA target the MERS-CoV genome. We also found that a number of microRNA are commonly identified in two other studies. Further research into identifying bona fide coronavirus targeting microRNA will be useful in understanding the importance of microRNA as a cellular defence mechanism against pathogenic coronavirus infections.
Collapse
Affiliation(s)
- Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|