1
|
Herfindal AM, Nilsen M, Aspholm TE, Schultz GIG, Valeur J, Rudi K, Thoresen M, Lundin KEA, Henriksen C, Bøhn SK. Effects of fructan and gluten on gut microbiota in individuals with self-reported non-celiac gluten/wheat sensitivity-a randomised controlled crossover trial. BMC Med 2024; 22:358. [PMID: 39227818 PMCID: PMC11373345 DOI: 10.1186/s12916-024-03562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Individuals with non-celiac gluten/wheat sensitivity (NCGWS) experience improvement in gastrointestinal symptoms following a gluten-free diet. Although previous results have indicated that fructo-oligosaccharides (FOS), a type of short-chain fructans, were more likely to induce symptoms than gluten in self-reported NCGWS patients, the underlying mechanisms are unresolved. METHODS Our main objective was therefore to investigate whether FOS-fructans and gluten affect the composition and diversity of the faecal microbiota (16S rRNA gene sequencing), faecal metabolites of microbial fermentation (short-chain fatty acids [SCFA]; gas chromatography with flame ionization detector), and a faecal biomarker of gut inflammation (neutrophil gelatinase-associated lipocalin, also known as lipocalin 2, NGAL/LCN2; ELISA). In the randomised double-blind placebo-controlled crossover study, 59 participants with self-reported NCGWS underwent three different 7-day diet challenges with gluten (5.7 g/day), FOS-fructans (2.1 g/day), and placebo separately (three periods, six challenge sequences). RESULTS The relative abundances of certain bacterial taxa were affected differently by the diet challenges. After the FOS-fructan challenge, Fusicatenibacter increased, while Eubacterium (E.) coprostanoligenes group, Anaerotruncus, and unknown Ruminococcaceae genera decreased. The gluten challenge was primarily characterized by increased abundance of Eubacterium xylanophilum group. However, no differences were found for bacterial diversity (α-diversity), overall bacterial community structure (β-diversity), faecal metabolites (SCFA), or NGAL/LCN2. Furthermore, gastrointestinal symptoms in response to FOS-fructans were generally not linked to substantial shifts in the gut bacterial community. However, the reduction in E. coprostanoligenes group following the FOS-fructan challenge was associated with increased gastrointestinal pain. Finally, correlation analysis revealed that changes in gastrointestinal symptoms following the FOS-fructan and gluten challenges were linked to varying bacterial abundances at baseline. CONCLUSIONS In conclusion, while FOS-fructans induced more gastrointestinal symptoms than gluten in the NCGWS patients, we did not find that substantial shifts in the composition nor function of the faecal microbiota could explain these differences in the current study. However, our results indicate that individual variations in baseline bacterial composition/function may influence the gastrointestinal symptom response to both FOS-fructans and gluten. Additionally, the change in E. coprostanoligenes group, which was associated with increased symptoms, implies that attention should be given to these bacteria in future trials investigating the impact of dietary treatments on gastrointestinal symptoms. TRIAL REGISTRATION Clinicaltrials.gov as NCT02464150.
Collapse
Affiliation(s)
- Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Morten Nilsen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Trude E Aspholm
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | | | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Magne Thoresen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut E A Lundin
- Disease Research Centre, Norwegian Coeliac, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Siv K Bøhn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
2
|
Letourneau J, Neubert BC, Dayal D, Carrion VM, Durand HK, Dallow EP, Jiang S, Kirtley M, Ginsburg GS, Doraiswamy PM, David LA. Weight, habitual fibre intake, and microbiome composition predict tolerance to fructan supplementation. Int J Food Sci Nutr 2024; 75:571-581. [PMID: 38982571 PMCID: PMC11491164 DOI: 10.1080/09637486.2024.2372590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Fructans are commonly used as dietary fibre supplements for their ability to promote the growth of beneficial gut microbes. However, fructan consumption has been associated with various dosage-dependent side effects. We characterised side effects in an exploratory analysis of a randomised trial in healthy adults (n = 40) who consumed 18 g/day inulin or placebo. We found that individuals weighing more or habitually consuming higher fibre exhibited the best tolerance. Furthermore, we identified associations between gut microbiome composition and host tolerance. Specifically, higher levels of Christensenellaceae R-7 group were associated with gastrointestinal discomfort, and a machine-learning-based approach successfully predicted high levels of flatulence, with [Ruminococcus] torques group and (Oscillospiraceae) UCG-002 sp. identified as key predictive taxa. These data reveal trends that can help guide personalised recommendations for initial inulin dosage. Our results support prior ecological findings indicating that fibre supplementation has the greatest impact on individuals whose baseline fibre intake is lowest.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Benjamin C Neubert
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710
| | - Diana Dayal
- School of Medicine, University of North Carolina, Chapel Hill, NC 27516
| | | | - Heather K Durand
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Eric P Dallow
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Michelle Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Geoffrey S Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Duke University Health System, Durham, NC 27710
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - P Murali Doraiswamy
- Duke Center for Applied Genomics and Precision Medicine, Duke University Health System, Durham, NC 27710
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
- Department of Psychiatry, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
3
|
Wu Y, Wang X, Wu W, Yang J. Mendelian randomization analysis reveals an independent causal relationship between four gut microbes and acne vulgaris. Front Microbiol 2024; 15:1326339. [PMID: 38371936 PMCID: PMC10869500 DOI: 10.3389/fmicb.2024.1326339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Numerous studies have suggested a correlation between gut microbiota and acne vulgaris; however, no specific causal link has been explored. Materials and methods To investigate the possible causal relationship between gut microbiota and acne vulgaris, this study employed a large-scale genome-wide association study (GWAS) summary statistic. Initially, a two-sample Mendelian randomization (MR) analysis was utilized to identify the specific gut microflora responsible for acne vulgaris. We used the Inverse Variance Weighted (IVW) method as the main MR analysis method. Additionally, we assessed heterogeneity and horizontal pleiotropy, while also examining the potential influence of individual single-nucleotide polymorphisms (SNPs) on the analysis results. In order to eliminate gut microbiota with reverse causal associations, we conducted reverse MR analysis. Multivariate Mendelian randomization analysis (MVMR) was then employed to verify the independence of the causal associations. Finally, we performed SNP annotation on the instrumental variables of independent gut microbiota and acne vulgaris to determine the genes where these genetic variations are located. We also explored the biological functions of these genes through enrichment analysis. Result The IVW method of forward MR identified nine gut microbes with a causal relationship with acne vulgaris (p < 0.05). The findings from the sensitivity analysis demonstrate the absence of heterogeneity or horizontal pleiotropy, and leave-one-out analysis indicates that the results are not driven by a single SNP. Additionally, the Reverse MR analysis excluded two reverse-correlated pathogenic gut microbes. And then, MVMR was used to analyze seven gut microbes, and it was found that Cyanobacterium and Family XIII were risk factors for acne vulgaris, while Ruminococcus1 and Ruminiclostridium5 were protective factors for acne vulgaris. After conducting biological annotation, we identified six genes (PLA2G4A, FADS2, TIMP17, ADAMTS9, ZC3H3, and CPSF4L) that may be associated with the pathogenic gut microbiota of acne vulgaris patients. The enrichment analysis results indicate that PLA2G4A/FADS2 is associated with fatty acid metabolism pathways. Conclusion Our study found independent causal relationships between four gut microbes and acne vulgaris, and revealed a genetic association between acne vulgaris patients and gut microbiota. Consider preventing and treating acne vulgaris by interfering with the relative content of these four gut microbes.
Collapse
Affiliation(s)
- Yujia Wu
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Xiaoyun Wang
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiankang Yang
- School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
4
|
Yang J, Lin J, Gu T, Sun Q, Xu W, Peng Y. Chicoric Acid Effectively Mitigated Dextran Sulfate Sodium (DSS)-Induced Colitis in BALB/c Mice by Modulating the Gut Microbiota and Fecal Metabolites. Int J Mol Sci 2024; 25:841. [PMID: 38255916 PMCID: PMC10815209 DOI: 10.3390/ijms25020841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Chicoric acid (CA) has been reported to exhibit biological activities; it remains unclear, however, whether CA could regulate colitis via modulation of the gut microbiota and metabolites. This study aimed to assess CA's impact on dextran sulfate sodium (DSS)-induced colitis, the gut microbiota, and metabolites. Mice were induced with 2.5% DSS to develop colitis over a 7-day period. CA was administered intragastrically one week prior to DSS treatment and continued for 14 days. The microbial composition in the stool was determined using 16S rRNA sequencing, while non-targeted metabolomics was employed to analyze the metabolic profiles of each mouse group. The results show that CA effectively alleviated colitis, as evidenced by an increased colon length, lowered disease activity index (DAI) and histological scores, and decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels. CA intervention restored the structure of gut microbiota. Specifically, it decreased the abundance of Bacteroidetes and Cyanobacteria at the phylum level and Bacteroides, Rosiarcus, and unclassified Xanthobacteraceae at the genus level, and increased the abundance of unclassified Lachnospiraceae at the genus level. Metabolomic analysis revealed that CA supplementation reversed the up-regulation of asymmetric dimethylarginine, N-glycolylneuraminic acid, and N-acetylneuraminic acid, as well as the down-regulation of phloroglucinol, thiamine, 4-methyl-5-thiazoleethanol, lithocholic acid, and oxymatrine induced by DSS. Our current research provides scientific evidence for developing CA into an anti-colitis functional food ingredient. Further clinical trials are warranted to elucidate the efficacy and mechanism of CA in treating human inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Jiani Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jie Lin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
5
|
Tayama J, Hamaguchi T, Koizumi K, Yamamura R, Okubo R, Kawahara JI, Inoue K, Takeoka A, Fukudo S. Efficacy of an eHealth self-management program in reducing irritable bowel syndrome symptom severity: a randomized controlled trial. Sci Rep 2024; 14:4. [PMID: 38172498 PMCID: PMC10764726 DOI: 10.1038/s41598-023-50293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to verify whether an eHealth-based self-management program can reduce irritable bowel syndrome (IBS) symptom severity. An open-label simple randomized controlled trial was conducted that compared an intervention group (n = 21) participating in an eHealth self-management program, which involved studying IBS-related information from an established self-help guide followed by in-built quizzes, with a treatment-as-usual group (n = 19) that, except for pharmacotherapy, had no treatment restrictions. Participants were female Japanese university students. The eHealth group received unlimited access to the self-management program for 8 weeks on computers and mobile devices. The primary outcome, participants' severity of IBS symptoms assessed using the IBS-severity index (IBS-SI), and the secondary outcomes of participants' quality of life, gut bacteria, and electroencephalography alpha and beta power percentages were measured at baseline and 8 weeks. A significant difference was found in the net change in IBS-SI scores between the eHealth and treatment-as-usual groups, and the former had significantly lower IBS-SI scores following the 8-week intervention than at baseline. Moreover, there was a significant difference in the net change in phylum Cyanobacteria between the eHealth and treatment-as-usual groups. Thus, the eHealth-based self-management program successfully reduced the severity of IBS symptoms.
Collapse
Affiliation(s)
- Jun Tayama
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| | - Toyohiro Hamaguchi
- Department of Occupational Therapy, School of Health and Social Services, Saitama Prefectural University, 820, Sannomiya, Koshigaya, Saitama, 343-8540, Japan
| | - Kohei Koizumi
- Department of Occupational Therapy, School of Health and Social Services, Saitama Prefectural University, 820, Sannomiya, Koshigaya, Saitama, 343-8540, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0815, Japan
| | - Ryo Okubo
- Department of Psychiatry and Neurology, National Hospital Organization Obihiro Hospital, 16, Kita 2, Nishi 18, Obihiro, Hokkaido, 080-0048, Japan
| | - Jun-Ichiro Kawahara
- Department of Psychology, Hokkaido University, Kita 10, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-0815, Japan
| | - Kenji Inoue
- Center for Student Success Research and Practice, Osaka University, 1-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Takeoka
- Health Center, Nagasaki University, 1-14, Bunkyo, Nagasaki, Nagasaki, 852-8521, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
6
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
7
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
McHarg AS, Leach S. The role of the gut microbiome in paediatric irritable bowel syndrome. AIMS Microbiol 2022; 8:454-469. [PMID: 36694592 PMCID: PMC9834077 DOI: 10.3934/microbiol.2022030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common and disabling condition in children. The pathophysiology of IBS is thought to be multifactorial but remains incompletely understood. There is growing evidence implicating the gut microbiome in IBS. Intestinal dysbiosis has been demonstrated in paediatric IBS cohorts; however, no uniform or consistent pattern has been identified. The exact mechanisms by which this dysbiosis contributes to IBS symptoms remain unknown. Available evidence suggests the imbalance produces a functional dysbiosis, with altered production of gases and metabolites that interact with the intestinal wall to cause symptoms, and enrichment or depletion of certain metabolic pathways. Additional hypothesised mechanisms include increased intestinal permeability, visceral hypersensitivity and altered gastrointestinal motility; however, these remain speculative in paediatric patients, with studies limited to animal models and adult populations. Interaction between dietary components and intestinal microbiota, particularly with fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), has drawn increasing attention. FODMAPs have been found to trigger and worsen IBS symptoms. This is thought to be related to products of their fermentation by a dysbiotic microbial population, although this remains to be proven. A low-FODMAP diet has shown promising success in ameliorating symptoms in some but not all patients. There remains much to be discovered about the role of the dysbiotic microbiome in paediatric IBS.
Collapse
Affiliation(s)
- Alexandra S McHarg
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia,Westfield Research Laboratories, Sydney Children's Hospital, Randwick, NSW, Australia,* Correspondence:
| | - Steven Leach
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia,Westfield Research Laboratories, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
9
|
Yang SH, Shan L, Chu KH. Fate and Transformation of 6:2 Fluorotelomer Sulfonic Acid Affected by Plant, Nutrient, Bioaugmentation, and Soil Microbiome Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10721-10731. [PMID: 35830472 PMCID: PMC10134682 DOI: 10.1021/acs.est.2c01867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
6:2 Fluorotelomer sulfonic acid (6:2 FTSA) is a dominant per- and poly-fluoroalkyl substance (PFAS) in aqueous film-forming foam (AFFF)-impacted soil. While its biotransformation mechanisms have been studied, the complex effects from plants, nutrients, and soil microbiome interactions on the fate and removal of 6:2 FTSA are poorly understood. This study systematically investigated the potential of phytoremediation for 6:2 FTSA byArabidopsis thalianacoupled with bioaugmentation ofRhodococcus jostiiRHA1 (designated as RHA1 hereafter) under different nutrient and microbiome conditions. Hyperaccumulation of 6:2 FTSA, defined as tissue/soil concentration > 10 and high translocation factor > 3, was observed in plants. However, biotransformation of 6:2 FTSA only occurred under sulfur-limited conditions. Spiking RHA1 not only enhanced the biotransformation of 6:2 FTSA in soil but also promoted plant growth. Soil microbiome analysis uncovered Rhodococcus as one of the dominant species in all RHA1-spiked soil. Different nutrients such as sulfur and carbon, bioaugmentation, and amendment of 6:2 FTSA caused significant changes in - microbial community structure. This study revealed the synergistic effects of phytoremediation and bioaugmentation on 6:2 FTSA removal. and highlighted that the fate of 6:2 FTSA was highly influced by the complex interactions of plants, nutrients, and soil microbiome.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Libo Shan
- Institute for Plant Genomics and Biotechnology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Pediatric Aspects of Nutrition Interventions for Disorders of Gut-Brain Interaction. Am J Gastroenterol 2022; 117:995-1009. [PMID: 35416794 PMCID: PMC9169765 DOI: 10.14309/ajg.0000000000001779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/09/2022] [Indexed: 12/11/2022]
Abstract
Dietary factors may play an important role in the generation of symptoms in children with disorders of gut-brain interaction (DGBIs). Although dietary modification may provide successful treatment, there is a relative paucity of controlled trials that have shown the effectiveness of dietary interventions. This study is a narrative review that explores the existing literature on food and pediatric DGBIs. The following have been shown to be beneficial: (i) in infants with colic, removing cow's milk from the infant's diet or from the maternal diet in those who are breastfed; (ii) in infants with regurgitation, adding thickeners to the formula or removing cow's milk protein from the infant's diet or the maternal diet in those who are breastfed; and (iii) in children with pain-predominant DGBIs, using soluble fiber supplementation or a low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols diet. In children with functional constipation, there is no evidence that adding fiber is beneficial. Given that most dietary interventions include restriction of different foods in children, a thoughtful approach and close follow-up are needed.
Collapse
|
11
|
Gibson PR, Halmos EP, So D, Yao CK, Varney JE, Muir JG. Diet as a therapeutic tool in chronic gastrointestinal disorders: Lessons from the FODMAP journey. J Gastroenterol Hepatol 2022; 37:644-652. [PMID: 34994019 DOI: 10.1111/jgh.15772] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Diet is a powerful tool in the management of gastrointestinal disorders, but developing diet therapies is fraught with challenge. This review discusses key lessons from the FODMAP diet journey. METHODS Published literature and clinical experience were reviewed. RESULTS Key to designing a varied, nutritionally adequate low-FODMAP diet was our accurate and comprehensive database of FODMAP composition, made universally accessible via our user-friendly, digital application. Our discovery that FODMAPs coexist with gluten in cereal products and subsequent gluten/fructan challenge studies in nonceliac gluten-sensitive populations highlighted issues of collinearity in the nutrient composition of food and confirmation bias in the interpretation of dietary studies. Despite numerous challenges in designing, funding, and executing dietary randomized controlled trials, efficacy of the low-FODMAP diet has been repeatedly demonstrated, and confirmed by real-world experience, giving this therapy credibility in the eyes of clinicians and researchers. Furthermore, real-world application of this diet saw the evolution of a safe and effective three-phased approach. Specialist dietitians must deliver this diet to optimize outcomes as they can target and tailor the therapy and to mitigate the key risks of compromising nutritional adequacy and precipitating disordered eating behaviors, skills outside the gastroenterologist's standard tool kit. While concurrent probiotics are ineffective, specific fiber supplements may improve short-term and long-term outcomes. CONCLUSIONS The FODMAP diet is highly effective, but optimal outcomes are contingent on the involvement of a gastroenterological dietitian who can assess, educate, and monitor patients and manage risks associated with implementation of this restrictive diet.
Collapse
Affiliation(s)
- Peter R Gibson
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Emma P Halmos
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Daniel So
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Chu K Yao
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Jane E Varney
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Jane G Muir
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Hu C, Rzymski P. Non-Photosynthetic Melainabacteria (Cyanobacteria) in Human Gut: Characteristics and Association with Health. Life (Basel) 2022; 12:life12040476. [PMID: 35454968 PMCID: PMC9029806 DOI: 10.3390/life12040476] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/13/2023] Open
Abstract
Gut microorganisms are comprised of thousands of species and play an important role in the host’s metabolism, overall health status, and risk of disease. Recently, the discovery of non-photosynthetic cyanobacteria (class “Melainabacteria”) in the human and animal gut triggered a broad interest in studying cyanobacteria’s evolution, physiology, and ecological relevance of the Melainabacteria members. In the present paper, we review the general characteristics of Melainabacteria, their phylogeny, distribution, and ecology. The potential link between these microorganisms and human health is also discussed based on available human-microbiome studies. Their abundance tends to increase in patients with selected neurodegenerative, gastrointestinal, hepatic, metabolic, and respiratory diseases. However, the available evidence is correlative and requires further longitudinal studies. Although the research on Melainabacteria in the human gut is still in its infancy, elucidation of their role appears important in better understanding microbiome–human health interactions. Further studies aiming to identify particular gut cyanobacteria species, culture them in vitro, and characterize them on the molecular, biochemical, and physiological levels are encouraged.
Collapse
Affiliation(s)
- Chenlin Hu
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Correspondence: (C.H.); (P.R.)
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
- Correspondence: (C.H.); (P.R.)
| |
Collapse
|
13
|
Zhang X, Liu L, Bai W, Han Y, Hou X. Evolution of Intestinal Microbiota of Asphyxiated Neonates Within 1 Week and Its Relationship With Neural Development at 6 Months. Front Pediatr 2021; 9:690339. [PMID: 34497782 PMCID: PMC8419515 DOI: 10.3389/fped.2021.690339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction: Asphyxia is an emergent condition in neonates that may influence the function of the nervous system. Research has shown that intestinal microbiota is very important for neurodevelopment. Studies regarding the association between gut microbiota and neurodevelopment outcome in asphyxiated newborns remain scarce. Objective: To study the microbial characteristics of asphyxiated neonates within 1 week of life and to investigate their relationship with neural development at 6 months. Methods: The feces produced on days 1, 3, and 5, and the clinical data of full-term neonates with asphyxia and without asphyxia, delivered from March 2019 to October 2020 at Peking University First Hospital, were collected. We used 16S ribosomal deoxyribonucleic acid amplicon sequencing to detect the intestinal microbiota of asphyxiated neonates and neonates in the control group. We followed up asphyxiated neonates for 6 months and used the Ages and Stages Questionnaires-3 (ASQ-3) to evaluate their development. Results: A total of 45 neonates were enrolled in the study group and 32 were enrolled in the control group. On day 1, the diversity and richness of the microflora of the study group were more than those of the control group. Non-metric multidimensional scaling analysis showed significant differences in the microbiota of the two groups on days 1, 3, and 5. At the phylum level, the main microflora of the two groups were not different. At the genus level, the study group had increased relative abundance of Clostridium_sensu_stricto_1, Lachnoclostridium, Fusicatenibacter, etc. on day 1. On day 3, the relative abundance of Clostridium_sensu_stricto_1, Fusicatenibacter, etc. was still greater than that of the control group, and the relative abundance of Staphylococcus was less than that of the control group. On day 5, the relative abundance of Clostridium_sensu_stricto_1 and Lachnoclostridium was still higher than that of the control group, and the relative abundance of Dubosiella in the study group was significantly increased. At the species level, on day 3, the relative abundance of Staphylococcus caprae in the study group was less than that in the control group. Linear discriminant analysis effect size showed that the microbiota of the study group mainly consisted of Lachnospiraceae and Clostridia on day 1 and Clostridia on day 3. In the control group, Staphylococcus was the dominant bacterium on day 3. Neonates in the study group were followed up for 6 months, and the communication score of ASQ-3 was negatively correlated with the relative abundance of Lachnospiraceae and Clostridia on day 1. Conclusion: The diversity and richness of the microbiota of asphyxiated neonates on the first day of life were significantly increased and mainly consisted of pathogenic flora. Lachnospiraceae and Clostridia found in neonates with asphyxia on day 1 of life may be related to neural development at 6 months.
Collapse
Affiliation(s)
| | | | | | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Chumpitazi BP, Shulman RJ. Editorial: defining a microbial signature to predict non-response to a low FODMAP diet-a step closer or is it? Authors' reply. Aliment Pharmacol Ther 2021; 53:648-649. [PMID: 33566399 PMCID: PMC8268964 DOI: 10.1111/apt.16244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- BP Chumpitazi
- Department of Pediatrics, Baylor College of Medicine,
Houston, TX 77030,Children’s Nutrition Research Center, United States
Department of Agriculture, Houston, TX 77030
| | - RJ Shulman
- Department of Pediatrics, Baylor College of Medicine,
Houston, TX 77030,Children’s Nutrition Research Center, United States
Department of Agriculture, Houston, TX 77030
| |
Collapse
|