1
|
Raza S, Uçan U, Aksoy M, Erdoğan G, Naseer Z, Khan K. Sericin-Enriched Rabbit Semen Preservation: Implications for Short-Term Storage Quality and Fertility at 4 or 15 °C. Animals (Basel) 2024; 14:3429. [PMID: 39682394 DOI: 10.3390/ani14233429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The influence of sericin supplementation and chilling temperatures (4 and 15 °C) on the short-term storage quality and fertility of rabbit semen was assessed over 72 h of storage. In experiment 1, pooled semen (five replications) was diluted to a concentration of 50 M mL-1, and assigned to control, 0.1%, and 0.5% sericin groups, stored at 4 or 15 °C. Sperm motility, sperm kinematics, viability, and membrane and acrosome integrity were assessed at 0, 24, 48, and 72 h of storage. Experiments 2 and 3 were conducted to observe the effect of sericin on bacterial growth and in vivo fertility. The results of experiment 1 showed that sericin treatment, storage temperature, and storage duration influenced progressive and total sperm motility. The storage duration affected all sperm kinematics variables, whereas VCL, VSL, VAP, and BCF sperm kinematics altered in response to sericin treatment and storage temperature. Similarly, significant effects of sericin treatment, storage temperature, and storage duration were observed for acrosome integrity, sperm membrane integrity, and sperm viability. The results of experiment 2 indicated the antimicrobial effects of sericin when sperm were stored at 15 °C for 72 h. While promising pregnancy outcomes were observed with sericin-treated sperm for 72 h, these results were not significantly different. This study conclusively demonstrates that sericin treatment enhances the quality of rabbit semen when stored at lower temperatures for longer durations. The antimicrobial effects of sericin could be a contributing factor to the improved in vitro and in vivo fertility of rabbit sperm.
Collapse
Affiliation(s)
- Sanan Raza
- Department of Clinical Sciences, Theriogenology Section, University of Veterinary and Animal Sciences, Sub-Campus, Jhang 35200, Pakistan
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydın 09016, Türkiye
| | - Uğur Uçan
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydın 09016, Türkiye
| | - Melih Aksoy
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydın 09016, Türkiye
| | - Güneş Erdoğan
- Department of Veterinary Obstetrics and Gynecology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydın 09016, Türkiye
| | - Zahid Naseer
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Komal Khan
- Department of Basic Sciences, Anatomy Section, University of Veterinary and Animal Sciences, Sub-Campus, Jhang 35200, Pakistan
| |
Collapse
|
2
|
Karcz A, Van Soom A, Smits K, Van Vlierberghe S, Verplancke R, Pascottini OB, Van den Abbeel E, Vanfleteren J. Development of a Microfluidic Chip Powered by EWOD for In Vitro Manipulation of Bovine Embryos. BIOSENSORS 2023; 13:bios13040419. [PMID: 37185494 PMCID: PMC10136516 DOI: 10.3390/bios13040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Digital microfluidics (DMF) holds great potential for the alleviation of laboratory procedures in assisted reproductive technologies (ARTs). The electrowetting on dielectric (EWOD) technology provides dynamic culture conditions in vitro that may better mimic the natural embryo microenvironment. Thus far, EWOD microdevices have been proposed for in vitro gamete and embryo handling in mice and for analyzing the human embryo secretome. This article presents the development of the first microfluidic chip utilizing EWOD technology designed for the manipulation of bovine embryos in vitro. The prototype sustains the cell cycles of embryos manipulated individually on the chips during in vitro culture (IVC). Challenges related to the chip fabrication as well as to its application during bovine embryo IVC in accordance with the adapted on-chip protocol are thoroughly discussed, and future directions for DMF in ARTs are indicated.
Collapse
Affiliation(s)
- Adriana Karcz
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Belgium
- Reproductive Biology Unit (RBU), Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133 D4, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Reproductive Biology Unit (RBU), Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133 D4, 9820 Merelbeke, Belgium
| | - Katrien Smits
- Reproductive Biology Unit (RBU), Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133 D4, 9820 Merelbeke, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Campus Sterre, Building S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Rik Verplancke
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Belgium
| | - Osvaldo Bogado Pascottini
- Reproductive Biology Unit (RBU), Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133 D4, 9820 Merelbeke, Belgium
| | - Etienne Van den Abbeel
- Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jan Vanfleteren
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Belgium
| |
Collapse
|
3
|
Banafshi O, Nasseri S, Farhadi L, Alasvand M, Khadem-Erfan MB, Hosseini J, Miraki S, Fathi F. The effects of supplemented sericin on in vitro maturation and preimplantation development of mouse embryos: An experimental study. Int J Reprod Biomed 2021; 19:921-928. [PMID: 34805732 PMCID: PMC8595910 DOI: 10.18502/ijrm.v19i10.9824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/11/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
Background Mouse embryo culture condition is an essential part of transgenic, reproductive and developmental biology laboratories. Mouse embryonic culture media may have a high risk of serum contamination with pathogens. Objective To investigate the effect of sericin as an embryo culture medium supplement on in vitro maturation (IVM), in vitro fertilization (IVF), and development of the preimplantation embryo in mice. Materials and Methods The effects of sericin at three concentrations (subgroups) of 0.1%, 0.5%, and 1% as a medium supplement on IVM, IVF, and in vitro development of mouse embryos were separately investigated and compared with a sericin-free (control) group. The cumulative effect of the three concentrations was evaluated for IVM + in vitro development and IVF + in vitro development as follow-up groups. Results In the IVM group, compared to the control group, the number of oocysts reaching the MII stage was significantly higher when 1% sericin was used (161/208 = 77.4%). No significant results were observed in the IVF and in vitro development groups with different concentrations of sericin compared to the control group. Among the follow-up groups, in the IVM + in vitro development group, the number of oocytes was higher after passing the IVM and IVF and reaching the blastocysts stage when 1% sericin was used, compared with other sericin subgroups. A significant difference was also noted when compared with the control group (p = 0.048). The IVF + in vitro development study group, on the other hand, did not show any significant relationship. Conclusion It can be concluded that 1% sericin can be used as a supplement in mouse embryo cultures to improve the IVM rate. Also, based on the findings, sericin appears to be an effective supplement which can have a positive effect on the development of embryos derived from IVM.
Collapse
Affiliation(s)
- Omid Banafshi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Farhadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Alasvand
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Bagher Khadem-Erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Javad Hosseini
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saber Miraki
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
4
|
Mesalam A, Lee KL, Khan I, Chowdhury MMR, Zhang S, Song SH, Joo MD, Lee JH, Jin JI, Kong IK. A combination of bovine serum albumin with insulin-transferrin-sodium selenite and/or epidermal growth factor as alternatives to fetal bovine serum in culture medium improves bovine embryo quality and trophoblast invasion by induction of matrix metalloproteinases. Reprod Fertil Dev 2019; 31:333-346. [PMID: 30086822 DOI: 10.1071/rd18162] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/07/2018] [Indexed: 12/17/2022] Open
Abstract
This study investigated the use of bovine serum albumin (BSA) plus insulin-transferrin-sodium selenite (ITS) and/or epidermal growth factor (EGF) as alternatives to fetal bovine serum (FBS) in embryo culture medium. The developmental ability and quality of bovine embryos were determined by assessing their cell number, lipid content, gene expression and cryotolerance, as well as the invasion ability of trophoblasts. The percentage of embryos that underwent cleavage and formed a blastocyst was higher (P<0.01) in medium containing ITS plus EGF and BSA than in medium containing FBS. Culture with ITS plus EGF and BSA also increased the hatching ability of blastocysts and the total cell number per blastocyst. Furthermore, the beneficial effects of BAS plus ITS and EGF on embryos were associated with a significantly reduced intracellular lipid content, which increased their cryotolerance. An invasion assay confirmed that culture with ITS plus EGF and BSA significantly improved the invasion ability of trophoblasts. Real-time quantitative polymerase chain reaction analysis showed that the mRNA levels of matrix metalloproteinase-2 (MMP2) and MMP9, acyl-CoA synthetase long-chain family member 3, acyl-coenzyme A dehydrogenase long-chain and hydroxymethylglutaryl-CoA reductase significantly increased upon culture with ITS plus EGF and BSA. Moreover, protein expression levels of matrix metalloproteinase-2 and -9 increased (P<0.01) in medium supplemented with ITS plus EGF and BSA compared with medium supplemented with FBS. Taken together, these data suggest that supplementation of medium with ITS plus EGF and BSA improves invitro bovine embryo production, cryotolerance and invasion ability of trophoblasts.
Collapse
Affiliation(s)
- Ayman Mesalam
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Kyeong-Lim Lee
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Imran Khan
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - M M R Chowdhury
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Shimin Zhang
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Seok-Hwan Song
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Myeong-Don Joo
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Jae-Hoon Lee
- Department of Veterinary Science, College of Veterinary Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Jong-In Jin
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| |
Collapse
|
5
|
Kelley RL, Gardner DK. Individual culture and atmospheric oxygen during culture affect mouse preimplantation embryo metabolism and post-implantation development. Reprod Biomed Online 2019; 39:3-18. [PMID: 31122833 DOI: 10.1016/j.rbmo.2019.03.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 03/06/2019] [Indexed: 12/30/2022]
Abstract
RESEARCH QUESTION Does single embryo culture under atmospheric or reduced oxygen alter preimplantation metabolism and post-implantation development compared with culture in groups? DESIGN Mouse embryos were cultured under 5% or 20% oxygen, individually or in groups of 10. Spent media were analysed after 48, 72 and 96 h of culture. Blastocysts were assessed by outgrowth assay or transferred to pseudo-pregnant recipients, and fetal and placental weight, length and morphology were assessed. RESULTS Compared with group culture, individually cultured blastocysts had lower net consumption of glucose and aspartate and higher glutamate production. Atmospheric oxygen reduced uptake of glucose and aspartate and increased production of glutamate and ornithine compared with 5% oxygen. Combining 20% oxygen and single culture resulted in further metabolic changes: decreased leucine, methionine and threonine consumption. Under 5% oxygen, individual culture decreased placental labyrinth area but had no other effects on fetal and placental development or outgrowth size compared with group culture. Under 20% oxygen, however, individual culture reduced outgrowth size and fetal and placental weight compared with group-cultured embryos. CONCLUSIONS Preimplantation metabolism of glucose and amino acids is altered by both oxygen and individual culture, and fetal weight is reduced by individual culture under atmospheric oxygen but not 5% oxygen. This study raises concerns regarding the increasing prevalence of single embryo culture in human IVF and adds to the existing evidence regarding the detrimental effects of atmospheric oxygen during embryo culture. Furthermore, these data demonstrate the cumulative nature of stress during embryo culture and highlight the importance of optimizing each element of the culture system.
Collapse
Affiliation(s)
- Rebecca L Kelley
- School of BioSciences, The University of Melbourne, Parkville Victoria 3010, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville Victoria 3010, Australia.
| |
Collapse
|
6
|
The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 2017; 49:1029-1039. [DOI: 10.1007/s00726-017-2396-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
|
7
|
Kelley RL, Gardner DK. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media. Reprod Biomed Online 2017; 34:441-454. [PMID: 28268069 DOI: 10.1016/j.rbmo.2017.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 01/26/2023]
Abstract
Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P < 0.05). Reduction of media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P < 0.05), but not in 20% oxygen (55.2 ± 2.9 versus 57.1 ± 2.8). Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P < 0.05). Addition of embryo-conditioned media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P < 0.01). Single culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture.
Collapse
Affiliation(s)
- Rebecca L Kelley
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
8
|
Kelley RL, Gardner DK. Combined effects of individual culture and atmospheric oxygen on preimplantation mouse embryos in vitro. Reprod Biomed Online 2016; 33:537-549. [PMID: 27569702 DOI: 10.1016/j.rbmo.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Embryos are routinely cultured individually, although this can reduce blastocyst development. Culture in atmospheric (20%) oxygen is also common, despite multiple detrimental effects on embryos. Although frequently occurring together, the consequences of this combination are unknown. Mouse embryos were cultured individually or grouped, under physiological (5%) or atmospheric (20%) oxygen. Embryos were assessed by time-lapse and blastocyst cell allocation. Compared with the control group (5% oxygen group culture), 5-cell cleavage (t5) was delayed in 5% oxygen individual culture and 20% oxygen group culture (59.91 ± 0.23, 60.70 ± 0.29, 63.06 ± 0.32 h post-HCG respectively, P < 0.05). Embryos in 20% oxygen individual culture were delayed earlier (3-cell cleavage), and at t5 cleaved later than embryos in other treatments (66.01 ± 0.40 h, P < 0.001), this delay persisting to blastocyst hatching. Compared with controls, hatching rate and cells per blastocyst were reduced in 5% oxygen single culture and 20% oxygen group culture (134.1 ± 3.4, 104.5 ± 3.2, 73.4 ± 2.2 cells, P < 0.001), and were further reduced in 20% oxygen individual culture (57.0 ± 2.8 cells, P < 0.001), as was percentage inner cell mass. These data indicate combining individual culture and 20% oxygen is detrimental to embryo development.
Collapse
Affiliation(s)
- Rebecca L Kelley
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|