1
|
Chen Y, Wang Y, Liu X, Wang Y, Wen J, Zhao G, Cui H. Transcriptome analysis reveals the synergistic involvement of MGLL and LPIN1 in fatty acid synthesis in broiler pectoral muscles. Heliyon 2024; 10:e35437. [PMID: 39166083 PMCID: PMC11334894 DOI: 10.1016/j.heliyon.2024.e35437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Fatty acids (FAs) are one of the most important bioactive compounds affecting the quality of meat. In this study, we compared the expression profiles of genes involved in FA production in the breast muscle of Jingxing Yellow chickens at different days of age determined by transcriptomic analysis to identify key genes and pathways regulating the FA composition of the breast muscle. Through clustering analysis of gene expression data, the growth process of broiler chickens can be divided into two stages, namely the growth and development stage at the 35th and 63rd days of age (D35, D63), and the mature stage at the 119th day of age (D119). The content of some important unsaturated fatty acids (UFAs), such as C18:2n6c, C20:4n6, and C22:6n3, in the pectoral muscles, differed significantly between these two stages (p < 0.05). Therefore, we compared the gene expression profiles at D35 and D63 with those at D119, and identified differentially expressed genes (DEGs). The gene modules related to the five UFAs with significant changes were identified by weighted gene co-expression network analysis (WGCNA), and then 150 crossover genes were identified by crossover analysis of the detected DEGs and WGCNA. The results of the pathway enrichment analysis revealed the glycerolipid metabolism pathway related to lipid metabolism, in which the MGLL and LPIN1 genes were particularly enriched. In this study, the expression levels of MGLL and LPIN1 showed an increasing trend during the growth process of broilers, with a negative regulatory effect on the significantly reduced content of C18:2n6c in the pectoral muscle, and a positive regulatory effect on the significantly increased content of C20:4n6. These findings indicated that MGLL and LPIN1 synergistically promote the deposition of FAs, which may further promote the conversion of linoleic acid (C18:2n6c) to arachidonic acid (C20:4n6). Therefore, screening and identifying FA production-related functional genes are key to elucidate the regulatory molecular mechanism of production of FAs in chicken muscle, aiming to provide a theoretical basis for improving chicken meat quality.
Collapse
Affiliation(s)
| | | | - Xiaojing Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yanke Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Huanxian Cui
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| |
Collapse
|
2
|
Oyama H, Nishio M, Shibata E, Takemyo H, Ichinoseki K, Ishii K. Evaluation of genomic prediction considering non-additive genetic effects on fatty acid traits of Japanese Black cattle. Anim Sci J 2024; 95:e13978. [PMID: 38978175 DOI: 10.1111/asj.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
Genomic prediction was conducted using 2494 Japanese Black cattle from Hiroshima Prefecture and both single-nucleotide polymorphism information and phenotype data on monounsaturated fatty acid (MUFA) and oleic acid (C18:1) analyzed with gas chromatography. We compared the prediction accuracy for four models (A, additive genetic effects; AD, as for A with dominance genetic effects; ADR, as for AD with the runs of homozygosity (ROH) effects calculated by ROH-based relationship matrix; and ADF, as for AD with the ROH-based inbreeding coefficient of the linear regression). Bayesian methods were used to estimate variance components. The narrow-sense heritability estimates for MUFA and C18:1 were 0.52-0.53 and 0.57, respectively; the corresponding proportions of dominance genetic variance were 0.04-0.07 and 0.04-0.05, and the proportion of ROH variance was 0.02. The deviance information criterion values showed slight differences among the models, and the models provided similar prediction accuracy.
Collapse
Affiliation(s)
- Hidemi Oyama
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Motohide Nishio
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Eri Shibata
- Hiroshima Prefectural Technology Research Institute Livestock Technology Research Center, Shobara, Japan
| | - Hinaka Takemyo
- Hiroshima Prefectural Technology Research Institute Livestock Technology Research Center, Shobara, Japan
| | | | - Kazuo Ishii
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| |
Collapse
|
3
|
Fan S, Yuan P, Li S, Li H, Zhai B, Li Y, Zhang H, Gu J, Li H, Tian Y, Kang X, Zhang Y, Li G. Genetic architecture and key regulatory genes of fatty acid composition in Gushi chicken breast muscle determined by GWAS and WGCNA. BMC Genomics 2023; 24:434. [PMID: 37537524 PMCID: PMC10398928 DOI: 10.1186/s12864-023-09503-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Fatty acids composition in poultry muscle is directly related to its tenderness, flavour, and juiciness, whereas its genetic mechanisms have not been elucidated. In this study, the genetic structure and key regulatory genes of the breast muscle fatty acid composition of local Chinese chicken, Gushi-Anka F2 resource population by integrating genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) strategies. GWAS was performed based on 323,306 single nucleotide polymorphisms (SNPs) obtained by genotyping by sequencing (GBS) method and 721 chickens from the Gushi-Anka F2 resource population with highly variable fatty acid composition traits in the breast muscle. And then, according to the transcriptome data of the candidate genes that were obtained and phenotypic data of fatty acid composition traits in breast muscle of Gushi chickens at 14, 22, and 30 weeks of age, we conducted a WGCNA. RESULTS A total of 128 suggestive significantly associated SNPs for 11 fatty acid composition traits were identified and mapped on chromosomes (Chr) 2, 3, 4, 5, 13, 17, 21, and 27. Of these, the two most significant SNPs were Chr13:5,100,140 (P = 4.56423e-10) and Chr13:5,100,173 (P = 4.56423e-10), which explained 5.6% of the phenotypic variation in polyunsaturated fatty acids (PUFA). In addition, six fatty acid composition traits, including C20:1, C22:6, saturated fatty acid (SFA), unsaturated fatty acids (UFA), PUFA, and average chain length (ACL), were located in the same QTL intervals on Chr13. We obtained 505 genes by scanning the linkage disequilibrium (LD) regions of all significant SNPs and performed a WGCNA based on the transcriptome data of the above 505 genes. Combining two strategies, 9 hub genes (ENO1, ADH1, ASAH1, ADH1C, PIK3CD, WISP1, AKT1, PANK3, and C1QTNF2) were finally identified, which could be the potential candidate genes regulating fatty acid composition traits in chicken breast muscle. CONCLUSION The results of this study deepen our understanding of the genetic mechanisms underlying the regulation of fatty acid composition traits, which is helpful in the design of breeding strategies for the subsequent improvement of fatty acid composition in poultry muscle.
Collapse
Affiliation(s)
- Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
| | - Yuanfang Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, HeiLongJiang, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, Henan, China
| | - Hongyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
| | - Jinxin Gu
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China.
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, No.15 Longzihu University Area, Zhengzhou New District, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Guo X, Li T, Lu D, Yamada T, Li X, Bao S, Liu J, Borjigin G, Cang M, Tong B. Effects of the Expressions and Variants of the CAST Gene on the Fatty Acid Composition of the Longissimus Thoracis Muscle of Grazing Sonid Sheep. Animals (Basel) 2023; 13:ani13020195. [PMID: 36670735 PMCID: PMC9855194 DOI: 10.3390/ani13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Fatty acid (FA) composition has an important impact on the nutrition and flavor of meat, and on consumer health, and is receiving more attention in the sheep industry. This study aimed to evaluate the relationship between the expression levels of the CAST gene and the FA composition in the longissimus thoracis (LL) muscle, to identify novel variants of CAST, and to perform association analysis with the FA composition in grazing Sonid lambs. The correlation results showed that high expression levels of CAST are correlated with better FA compositions and classes in LL. For association studies, the results showed that c.1210C>T and c.1437G>A in LD-M, and c.2097C>T mutations are associated with some compositions and classes of FA in the LL of grazing Sonid sheep. Two missense c.646G>C (G216R) and c.1210C>T (R404C) mutations were predicted to influence the Calpain_inhib domains of CAST. Thus, the correlation results and associated mutations are expected to be genetic selection markers for the FA composition and meat quality of grazing Sonid lamb muscle and provide new insights into sheep meat quality traits influenced by the ovine CAST gene.
Collapse
Affiliation(s)
- Xin Guo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Terigele Li
- Inner Mongolia Agriculture Animal Husbandry Fishery and Biology Experiment Research Centre, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Datong Lu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Takahisa Yamada
- Department of Agrobiology, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Jiasen Liu
- Institute of Animal Science, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Ming Cang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- Correspondence: (M.C.); (B.T.)
| | - Bin Tong
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- Correspondence: (M.C.); (B.T.)
| |
Collapse
|
5
|
Nishio M, Inoue K, Arakawa A, Ichinoseki K, Kobayashi E, Okamura T, Fukuzawa Y, Ogawa S, Taniguchi M, Oe M, Takeda M, Kamata T, Konno M, Takagi M, Sekiya M, Matsuzawa T, Inoue Y, Watanabe A, Kobayashi H, Shibata E, Ohtani A, Yazaki R, Nakashima R, Ishii K. Application of linear and machine learning models to genomic prediction of fatty acid composition in Japanese Black cattle. Anim Sci J 2023; 94:e13883. [PMID: 37909231 DOI: 10.1111/asj.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023]
Abstract
We collected 3180 records of oleic acid (C18:1) and monounsaturated fatty acid (MUFA) measured using gas chromatography (GC) and 6960 records of C18:1 and MUFA measured using near-infrared spectroscopy (NIRS) in intermuscular fat samples of Japanese Black cattle. We compared genomic prediction performance for four linear models (genomic best linear unbiased prediction [GBLUP], kinship-adjusted multiple loci [KAML], BayesC, and BayesLASSO) and five machine learning models (Gaussian kernel [GK], deep kernel [DK], random forest [RF], extreme gradient boost [XGB], and convolutional neural network [CNN]). For GC-based C18:1 and MUFA, KAML showed the highest accuracies, followed by BayesC, XGB, DK, GK, and BayesLASSO, with more than 6% gain of accuracy by KAML over GBLUP. Meanwhile, DK had the highest prediction accuracy for NIRS-based C18:1 and MUFA, but the difference in accuracies between DK and KAML was slight. For all traits, accuracies of RF and CNN were lower than those of GBLUP. The KAML extends GBLUP methods, of which marker effects are weighted, and involves only additive genetic effects; whereas machine learning methods capture non-additive genetic effects. Thus, KAML is the most suitable method for breeding of fatty acid composition in Japanese Black cattle.
Collapse
Affiliation(s)
- Motohide Nishio
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Keiichi Inoue
- National Livestock Breeding Center, Fukushima, Japan
- University of Miyazaki, Miyazaki, Japan
| | - Aisaku Arakawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | | | - Eiji Kobayashi
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | | | - Yo Fukuzawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Shinichiro Ogawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | | | - Mika Oe
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | | | - Takehiro Kamata
- Aomori Prefectural Industrial Technology Research Center, Tsugaru, Japan
| | - Masaru Konno
- Iwate Agricultural Research Center Animal Industry Research Institute, Takizawa, Japan
| | - Michihiro Takagi
- Miyagi Prefecture Animal Industry Experiment Station, Osaki, Japan
| | - Mario Sekiya
- Akita Prefectural Livestock Experiment Station, Daisen, Japan
| | - Tamotsu Matsuzawa
- Livestock Research Centre, Fukushima Agricultural Technology Centre, Fukushima, Japan
| | - Yoshinobu Inoue
- Tottori Prefectural Livestock Research Center, Tottori, Japan
| | | | - Hiroshi Kobayashi
- Institute of Animal Production Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Misaki, Japan
| | - Eri Shibata
- Hiroshima Prefectural Technology Research Institute, Livestock Technology Research Center, Shobara, Japan
| | - Akihumi Ohtani
- Yamaguchi Prefectural Agriculture and Forestry General Technology Center, Mine, Japan
| | - Ryu Yazaki
- Oita Prefectural Agriculture, Forestry, and Fisheries Research Center, Takeda, Japan
| | - Ryotaro Nakashima
- Cattle Breeding Development Institute of Kagoshima Prefecture, Soo, Japan
| | - Kazuo Ishii
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| |
Collapse
|
6
|
Cui H, Liu L, Liu X, Wang Y, Luo N, Tan X, Zhu Y, Liu R, Zhao G, Wen J. A selected population study reveals the biochemical mechanism of intramuscular fat deposition in chicken meat. J Anim Sci Biotechnol 2022; 13:54. [PMID: 35546408 PMCID: PMC9097349 DOI: 10.1186/s40104-022-00705-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Increasing intramuscular fat (IMF) is an important strategy to improve meat quality, but the regulation mechanism of IMF deposition needs to be systematically clarified. RESULTS A total of 520 chickens from a selected line with improved IMF content and a control line were used to investigate the biochemical mechanism of IMF deposition in chickens. The results showed that the increased IMF would improve the flavor and tenderness quality of chicken meat. IMF content was mainly determined both by measuring triglyceride (TG) and phospholipid (PLIP) in muscle tissue, but only TG content was found to be decisive for IMF deposition. Furthermore, the increase in major fatty acid (FA) components in IMF is mainly derived from TGs (including C16:0, C16:1, C18:1n9c, and C18:2n6c, etc.), and the inhibition of certain very-long-chain FAs would help to IMF/TG deposition. CONCLUSIONS Our study elucidated the underlying biochemical mechanism of IMF deposition in chicken: Prevalent accumulation of long-chain FAs and inhibitions of medium-chain FAs and very long chain FA would jointly result in the increase of TGs with the FA biosynthesis and cellular uptake ways. Our findings will guide the production of high-quality chicken meat.
Collapse
Affiliation(s)
- Huanxian Cui
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lu Liu
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaojing Liu
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongli Wang
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Na Luo
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaodong Tan
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuting Zhu
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
Bedhane M, van der Werf J, de las Heras-Saldana S, Lim D, Park B, Na Park M, Seung Hee R, Clark S. The accuracy of genomic prediction for meat quality traits in Hanwoo cattle when using genotypes from different SNP densities and preselected variants from imputed whole genome sequence. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an20659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Genomic prediction is the use of genomic data in the estimation of genomic breeding values (GEBV) in animal breeding. In beef cattle breeding programs, genomic prediction increases the rates of genetic gain by increasing the accuracy of selection at earlier ages.
Aims
The objectives of the study were to examine the effect of single-nucleotide polymorphism (SNP) density and to evaluate the effect of using SNPs preselected from imputed whole-genome sequence for genomic prediction.
Methods
Genomic and phenotypic data from 2110 Hanwoo steers were used to predict GEBV for marbling score (MS), meat texture (MT), and meat colour (MC) traits. Three types of SNP densities including 50k, high-density (HD), and whole-genome sequence data and preselected SNPs from genome-wide association study (GWAS) were used for genomic prediction analyses. Two scenarios (independent and dependent discovery populations) were used to select top significant SNPs. The accuracy of GEBV was assessed using random cross-validation. Genomic best linear unbiased prediction (GBLUP) was used to predict the breeding values for each trait.
Key results
Our result showed that very similar prediction accuracies were observed across all SNP densities used in the study. The prediction accuracy among traits ranged from 0.29±0.05 for MC to 0.46±0.04 for MS. Depending on the studied traits, up to 5% of prediction accuracy improvement was obtained when the preselected SNPs from GWAS analysis were included in the prediction analysis.
Conclusions
High SNP density such as HD and the whole-genome sequence data yielded a similar prediction accuracy in Hanwoo beef cattle. Therefore, the 50K SNP chip panel is sufficient to capture the relationships in a breed with a small effective population size such as the Hanwoo cattle population. Preselected variants improved prediction accuracy when they were included in the genomic prediction model.
Implications
The estimated genomic prediction accuracies are moderately accurate in Hanwoo cattle and for searching for SNPs that are more productive could increase the accuracy of estimated breeding values for the studied traits.
Collapse
|
8
|
Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep. PLoS One 2021; 16:e0260514. [PMID: 34941886 PMCID: PMC8699643 DOI: 10.1371/journal.pone.0260514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Fatty acids (FA) in ruminants, especially unsaturated FA (USFA) have important impact in meat quality, nutritional value, and flavour quality of meat, and on consumer’s health. Identification of the genetic factors controlling the FA composition and metabolism is pivotal to select sheep that produce higher USFA and lower saturated (SFA) for the benefit of sheep industry and consumers. Therefore, this study was aimed to investigate the transcriptome profiling in the liver tissues collected from sheep with divergent USFA content in longissimus muscle using RNA deep-sequencing. From sheep (n = 100) population, liver tissues with higher (n = 3) and lower (n = 3) USFA content were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample were ranged from 21.28 to 28.51 million with a median of 23.90 million. Approximately, 198 genes were differentially regulated with significance level of p-adjusted value <0.05. Among them, 100 genes were up-regulated, and 98 were down-regulated (p<0.01, FC>1.5) in the higher USFA group. A large proportion of key genes involved in FA biosynthesis, adipogenesis, fat deposition, and lipid metabolism were identified, such as APOA5, SLC25A30, GFPT1, LEPR, TGFBR2, FABP7, GSTCD, and CYP17A. Pathway analysis revealed that glycosaminoglycan biosynthesis- keratan sulfate, adipokine signaling, galactose metabolism, endocrine and other factors-regulating calcium metabolism, mineral metabolism, and PPAR signaling pathway were playing important regulatory roles in FA metabolism. Importantly, polymorphism and association analyses showed that mutation in APOA5, CFHR5, TGFBR2 and LEPR genes could be potential markers for the FA composition in sheep. These polymorphisms and transcriptome networks controlling the FA variation could be used as genetic markers for FA composition-related traits improvement. However, functional validation is required to confirm the effect of these SNPs in other sheep population in order to incorporate them in the sheep breeding program.
Collapse
|
9
|
Kohama N, Yoshida E, Masaki T, Iwamoto E, Fukushima M, Honda T, Oyama K. Estimation of genetic parameters for carcass grading traits, image analysis traits, and monounsaturated fatty acids in Japanese Black cattle from Hyogo Prefecture. Anim Sci J 2021; 92:e13664. [PMID: 34882915 DOI: 10.1111/asj.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/27/2022]
Abstract
Genetic parameters for carcass grading traits, image analysis traits, and monounsaturated fatty acid (MUFA) percentages were estimated in 29,942 Japanese Black cattle from Hyogo Prefecture. The analyzed traits included five carcass grading traits, two image analysis traits, fat area ratio and fineness index, and two MUFA traits, one measured in intermuscular fat using near-infrared spectroscopy (NIRS) and the other in intramuscular fat using gas chromatography (GC). The heritability estimates of image analysis traits and MUFA were moderate to high, ranging from 0.395 to 0.740, and it was considered that they could be improved simultaneously with carcass grading traits because no severe genetic antagonism was observed. Although the heritability of the NIRS-based intermuscular MUFA was slightly lower than that of the GC-based intramuscular MUFA, the genetic correlation between the two methods was as high as 0.804. These results indicate that the NIRS method can be used as an alternative evaluation procedure to predict MUFA in intramuscular fat in the longissimus muscle.
Collapse
Affiliation(s)
- Namiko Kohama
- Hokubu Agricultural Technology Institute, Hyogo Pref. Technology Center for Agriculture, Forestry and Fisheries, Asago, Hyogo, Japan.,Food Resources Education & Research Center, Kobe University, Kasai, Hyogo, Japan
| | - Emi Yoshida
- Livestock Technology Institute, Hyogo Pref. Technology Center for Agriculture, Forestry, and Fisheries, Kasai, Hyogo, Japan
| | - Tatsunori Masaki
- Livestock Technology Institute, Hyogo Pref. Technology Center for Agriculture, Forestry, and Fisheries, Kasai, Hyogo, Japan
| | - Eiji Iwamoto
- Hokubu Agricultural Technology Institute, Hyogo Pref. Technology Center for Agriculture, Forestry and Fisheries, Asago, Hyogo, Japan
| | | | - Takeshi Honda
- Food Resources Education & Research Center, Kobe University, Kasai, Hyogo, Japan
| | - Kenji Oyama
- Food Resources Education & Research Center, Kobe University, Kasai, Hyogo, Japan
| |
Collapse
|
10
|
Soice E, Johnston J. Immortalizing Cells for Human Consumption. Int J Mol Sci 2021; 22:11660. [PMID: 34769088 PMCID: PMC8584139 DOI: 10.3390/ijms222111660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
The need to produce immortal, food-relevant cell lines is one of the most pressing challenges of cellular agriculture, the field which seeks to produce meat and other animal products via tissue engineering and synthetic biology. Immortal cell lines have a long and complicated story, from the first recognized immortal human cell lines taken from Henrietta Lacks, to today, where they are used to assay toxicity and produce therapeutics, to the future, where they could be used to create meat without harming an animal. Although work in immortal cell lines began more than 50 years ago, there are few existing cell lines made of species and cell types appropriate for cultured meat. Cells in cultured meat will be eaten by consumers; therefore, cultured meat cell lines will also require unique attributes not selected for in other cell line applications. Specifically, cultured meat cell lines will need to be approved as safe for consumption as food, proliferate and differentiate efficiently at industrial scales, and have desirable taste, texture, and nutrition characteristics for consumers. This paper defines what cell lines are needed, the existing methods to produce new cell lines and their limitations, and the unique considerations of cell lines used in cultured meat.
Collapse
Affiliation(s)
- Emily Soice
- School of Science, Massachusetts Institute of Technology, 182 Memorial Drive, Cambridge, MA 02142, USA;
- School of Humanities, Arts, and Social Sciences (SHASS), Massachusetts Institute of Technology, 182 Memorial Drive, Cambridge, MA 02142, USA
- New Harvest, 288 Norfolk Street, 4th Floor, Cambridge, MA 02139, USA
| | - Jeremiah Johnston
- New Harvest, 288 Norfolk Street, 4th Floor, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Liu J, Pogorzelski G, Neveu A, Legrand I, Pethick D, Ellies-Oury MP, Hocquette JF. Are Marbling and the Prediction of Beef Eating Quality Affected by Different Grading Sites? Front Vet Sci 2021; 8:611153. [PMID: 33855054 PMCID: PMC8039122 DOI: 10.3389/fvets.2021.611153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
For the European abattoirs, the preferred carcass grading site is at the fifth rib, and cutting at the tenth rib as in Australia could lead to a lower economic value of the carcass. Therefore, the objective of this study was to compare the grading scores of marbling and the meat and fat color on Musculus longissimus thoracis et lumborum (LTL) at the fifth and the tenth thoracic vertebrae. The consequences on the prediction of beef eating quality using the Meat Standards Australia (MSA) grading scheme were also evaluated for cull cows, which produce the majority of beef consumed in France. Carcasses from 208 French cattle, mainly Limousine cows, were graded according to the Australian Beef Carcase Chiller Assessment System (ABCAS) used for the implementation of the MSA system. The results indicate that there was no significant difference in the marbling score, between the fifth and the tenth ribs and hence in the MSA index and in the Global Quality [meat quality (MQ4)] scores calculated from marbling values from either the fifth rib or the tenth rib. However, the meat color at the tenth rib was significantly darker than that at the fifth rib (p < 0.01), and the fat color at the tenth rib was significantly yellower than that at the fifth rib (p < 0.001). The results of this study suggest that the grading of marbling can be conducted on M. LTL at the fifth thoracic vertebrae for routine use of the MSA system in France and, more generally, in Europe. However, further investigation and adjustment would be needed for other critical MSA scores (such as rib fat thickness) while respecting the European carcass quartering practices.
Collapse
Affiliation(s)
- Jingjing Liu
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR1213, Recherches sur les Herbivores, Clermont-Ferrand, France
| | - Grzegorz Pogorzelski
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Alix Neveu
- École Nationale Supérieure Agronomique de Toulouse, Toulouse, France
| | - Isabelle Legrand
- Institut de l'Elevage, Service Qualité des Carcasses et des Viandes, MRA-NA, Limoges, France
| | - David Pethick
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Marie-Pierre Ellies-Oury
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR1213, Recherches sur les Herbivores, Clermont-Ferrand, France.,Bordeaux Sciences Agro, Bordeaux, France
| | - Jean-François Hocquette
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR1213, Recherches sur les Herbivores, Clermont-Ferrand, France
| |
Collapse
|
12
|
Inoue K, Inoue Y, Oe T, Nishimura M. Genomic imprinting variances of beef carcass traits and physiochemical characteristics in Japanese Black cattle. Anim Sci J 2021; 92:e13504. [PMID: 33458906 DOI: 10.1111/asj.13504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/17/2020] [Indexed: 01/15/2023]
Abstract
The objective of this study was to estimate variance components related to imprinting for carcass traits and physiochemical characteristics in Japanese Black cattle. The carcass records obtained from 4,220 Japanese Black feedlot cattle included carcass weight (CW), rib eye area (REA), rib thickness, subcutaneous fat thickness, and beef marbling score (BMS), and the physiochemical characteristics were fat, moisture, glycogen per proportion of moisture content, oleic acid, and monounsaturated fatty acids (MUFA). To detect gametic effects, an imprinting model was fitted. High additive heritabilities were estimated for all traits (from 0.516 for glycogen to 0.853 for fat) and were reduced in Mendelian heritability. The range of the differences was from 0.002 (CW) to 0.331 (fat and moisture), and the reductions were due to their imprinting variances. The ratio of the imprinting variance to the total additive genetic variance for REA (0.374), BMS (0.291), fat (0.387), moisture (0.388), and MUFA (0.337) were large (p < 0.05). These imprinting variances were due to the maternal contribution and suggested the existence of maternally expressed genomic imprinting effects on the traits in Japanese Black cattle. Therefore, maternal gametic effects should be considered in breeding programs for Japanese Black cattle.
Collapse
Affiliation(s)
- Keiichi Inoue
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Yoshinobu Inoue
- Tottori Prefectural Livestock Research Center, Kotoura, Tottori, Japan
| | - Toshiaki Oe
- Tottori Prefecture Department of Agriculture, Forestry and Fishery Agricultural Advancement Strategy Administration Livestock Division, Tottori, Tottori, Japan
| | - Masami Nishimura
- Tottori Prefectural Livestock Research Center, Kotoura, Tottori, Japan
| |
Collapse
|
13
|
Inoue K, Hosono M, Oyama H, Hirooka H. Genetic associations between reproductive traits for first calving and growth curve characteristics of Japanese Black cattle. Anim Sci J 2020; 91:e13467. [PMID: 33043536 DOI: 10.1111/asj.13467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
The objective of this study was to estimate genetic parameters for first calving reproductive traits and growth curve characteristics in Japanese Black cattle. The Gompertz growth function was fitted to body weight-age data to obtain the mature weight (MWT) and rate of maturing (ROM) of cows. Data of reproductive traits including the first service conception rate (CR) for heifers, age at the first calving (AFC), and gestation length for the first calving were collected. Records of 3,204 animals were used for analysis. Genetic parameters were estimated using a linear uni- and bivariate animal model. The heritability estimates were moderate (0.29 for ROM) and high (0.57 for MWT) for growth curve parameters and low (0.03-0.11) for reproductive traits. There was a negative genetic correlation between MWT and ROM (-0.26), suggesting that an animal with a faster ROM would show a lower MWT. CR was negatively correlated with MWT (-0.42) but significantly and positively correlated with ROM (0.91). There was a negative genetic correlation between AFC and MWT (-0.49). These results suggest that a heifer with a faster ROM and lower MWT would show a higher CR. Meanwhile, a heifer with a lower MWT would show a higher AFC.
Collapse
Affiliation(s)
- Keiichi Inoue
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Masahiko Hosono
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Hidemi Oyama
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | | |
Collapse
|
14
|
Relationships Between Fat and Cholesterol Contents and Fatty Acid Composition in Different Meat-Producing Animal Species. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The objective of this study was to determine the relationships between intramuscular fat, cholesterol contents and fatty acid composition in the muscles of different animal species. Intramuscular fat, cholesterol and fatty acid composition in 207 muscle samples from 129 animals of different species (pigs, beef cattle, farmed red deer, horses and geese) were determined and analysed. The obtained results indicated unequal relations between intramuscular fat and cholesterol contents and fatty acid proportions in the muscles of different animal species. The increase of intramuscular fat content resulted in higher monounsaturated and lower polyunsaturated fatty acid contents in most muscles of meat producing animals. In all the species higher fatness did not show any increase in cholesterol content and also cholesterol contents were lower as fat increased in m. semimembranosus of pigs and m. pectoralis profundus of horses. The cholesterol content positively correlated with saturated and monounsaturated fatty acids in the longissimus muscle with the lowest fat content found in red deer and beef cattle, whereas the correlations between these measures were negative in m. pectoralis profundus of horses and the breast of goose containing high fat levels. Negative correlations between polyunsaturated fatty acids and cholesterol content were found in the longissimus muscle of red deer and cattle, whereas these correlations in goose breast and horse meat were positive.
Collapse
|
15
|
Inoue K, Nishio M, Shoji N, Hirooka H. Effects of parent-of-origin models with different pedigree information on beef carcass traits and fatty acid composition in Japanese Black cattle. J Anim Breed Genet 2020; 138:45-55. [PMID: 32741027 DOI: 10.1111/jbg.12493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 06/07/2020] [Indexed: 11/29/2022]
Abstract
Genomic imprinting should be considered in animal breeding systems to avoid lead in bias in genetic parameter estimation. The objective of this study was to clarify the effects of pedigree information on imprinting variances for carcass traits and fatty acid composition in Japanese Black cattle. Carcass records [carcass weight, rib eye area, rib thickness (RT), subcutaneous fat thickness and beef marbling score (BMS)] and fatty acid composition were obtained for 11,855 Japanese Black feedlot cattle. To estimate and compare the imprinting variances for the traits, two imprinting models with different pedigree information [the sire-dam gametic relationship matrix (Model 1) and the sire-maternal grandsire (MGS) numerator relationship matrix (Model 2)] were fitted. The ratio of the imprinting variance to the total additive genetic variance for RT (6.33%) and BMS (19.00%) was significant in Model 1, but only that for BMS (21.09%) was significant in Model 2. This study revealed that fitting the sire-MGS model could be useful in estimating imprinting variance under certain conditions, such as when restricted pedigree information is available. Furthermore, the present result suggested that the maternal gametic effects on BMS should be included in breeding programmes for Japanese Black cattle to avoid selection bias caused by imprinting effects.
Collapse
Affiliation(s)
| | - Motohide Nishio
- NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Noriaki Shoji
- Yamagata Integrated Agricultural Research Center, Shinjo, Japan
| | | |
Collapse
|
16
|
Bedhane M, van der Werf J, Gondro C, Duijvesteijn N, Lim D, Park B, Park MN, Hee RS, Clark S. Genome-Wide Association Study of Meat Quality Traits in Hanwoo Beef Cattle Using Imputed Whole-Genome Sequence Data. Front Genet 2019; 10:1235. [PMID: 31850078 PMCID: PMC6895209 DOI: 10.3389/fgene.2019.01235] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/06/2019] [Indexed: 01/28/2023] Open
Abstract
The discovery of single nucleotide polymorphisms (SNP) and the subsequent genotyping of large numbers of animals have enabled large-scale analyses to begin to understand the biological processes that underpin variation in animal populations. In beef cattle, genome-wide association studies using genotype arrays have revealed many quantitative trait loci (QTL) for various production traits such as growth, efficiency and meat quality. Most studies regarding meat quality have focused on marbling, which is a key trait associated with meat eating quality. However, other important traits like meat color, texture and fat color have not commonly been studied. Developments in genome sequencing technologies provide new opportunities to identify regions associated with these traits more precisely. The objective of this study was to estimate variance components and identify significant variants underpinning variation in meat quality traits using imputed whole genome sequence data. Phenotypic and genomic data from 2,110 Hanwoo cattle were used. The estimated heritabilities for the studied traits were 0.01, 0.16, 0.31, and 0.49 for fat color, meat color, meat texture and marbling score, respectively. Marbling score and meat texture were highly correlated. The genome-wide association study revealed 107 significant SNPs located on 14 selected chromosomes (one QTL region per selected chromosome). Four QTL regions were identified on BTA2, 12, 16, and 24 for marbling score and two QTL regions were found for meat texture trait on BTA12 and 29. Similarly, three QTL regions were identified for meat color on BTA2, 14 and 24 and five QTL regions for fat color on BTA7, 10, 12, 16, and 21. Candidate genes were identified for all traits, and their potential influence on the given trait was discussed. The significant SNP will be an important inclusion into commercial genotyping arrays to select new breeding animals more accurately.
Collapse
Affiliation(s)
- Mohammed Bedhane
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Julius van der Werf
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Cedric Gondro
- College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Naomi Duijvesteijn
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Byoungho Park
- Animal Genetic Improvement Division, National Institute of Animal Science, Rural Development Administration, Seonghwan, South Korea
| | - Mi Na Park
- Animal Genetic Improvement Division, National Institute of Animal Science, Rural Development Administration, Seonghwan, South Korea
| | - Roh Seung Hee
- Animal Genetic Improvement Division, National Institute of Animal Science, Rural Development Administration, Seonghwan, South Korea
| | - Samuel Clark
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| |
Collapse
|
17
|
Egelandsdal B, Oostindjer M, Hovland EM, Okholm B, Saarem K, Bjerke F, Ruud L, Grabež V, Haug A. Identifying labelling and marketing advantages of nutrients in minced beef meat: A case study. Meat Sci 2019; 159:107920. [PMID: 31473367 DOI: 10.1016/j.meatsci.2019.107920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/24/2019] [Accepted: 08/20/2019] [Indexed: 11/29/2022]
Abstract
In 2006, the European Commission approved nutrition and health claim regulations of foods to stimulate healthier choices. To document how commercial, minced beef meat complied with regulations, meat samples from 72 carcasses were analysed. These samples were a source of niacin (B3), pyridoxine (B6), phosphorus and iron (cow meat only), and a rich source of protein, monounsaturated fat, vitamin B12 and zinc. A potential exists for establishing beef meat as a source of vitamin K, iron and selenium. The meat's nutrient relevance for young women when ingesting 150 g of raw beef mince/day was estimated. Increased levels of riboflavin (B2), pantothenic acid (B5), iron and selenium beyond presently observed, would better support this group's recommended nutrient intake. If the bioactivity of 25-OH-vitamin D3 could be used in calculations, vitamin D3 in the minced meat would add positively to the intake of vitamin D3 that was 49% of the recommended intake.
Collapse
Affiliation(s)
- Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway.
| | - Marije Oostindjer
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway
| | - Ellen-Margrethe Hovland
- Animalia - the Norwegian Meat and Poultry Research Centre, P.O. Box 396 Økern, NO-0513 Oslo, Norway
| | - Bolette Okholm
- Ministry of Environment and Food of Denmark, The Danish Veterinary and Food Administration, Laboratory Aarhus, Sønderskovvej 5, 8520 Lystrup, Denmark
| | | | - Frøydis Bjerke
- Animalia - the Norwegian Meat and Poultry Research Centre, P.O. Box 396 Økern, NO-0513 Oslo, Norway
| | - Lene Ruud
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway
| | - Vladana Grabež
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway
| | - Anna Haug
- Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway
| |
Collapse
|
18
|
RNA deep sequencing reveals novel transcripts and pathways involved in the unsaturated fatty acid metabolism in chicken. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Wang Z, Zhu B, Niu H, Zhang W, Xu L, Xu L, Chen Y, Zhang L, Gao X, Gao H, Zhang S, Xu L, Li J. Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle. J Anim Sci Biotechnol 2019; 10:27. [PMID: 30867906 PMCID: PMC6399853 DOI: 10.1186/s40104-019-0322-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 12/29/2022] Open
Abstract
Background Fatty acids are important traits that affect meat quality and nutritive values in beef cattle. Detection of genetic variants for fatty acid composition can help to elucidate the genetic mechanism underpinning these traits and promote the improvement of fatty acid profiles. In this study, we performed a genome-wide association study (GWAS) on fatty acid composition using high-density single nucleotide polymorphism (SNP) arrays in Chinese Wagyu cattle. Results In total, we detected 15 and 8 significant genome-wide SNPs for individual fatty acids and fatty acid groups in Chinese Wagyu cattle, respectively. Also, we identified nine candidate genes based on 100 kb regions around associated SNPs. Four SNPs significantly associated with C14:1 cis-9 were embedded with stearoyl-CoA desaturase (SCD), while three SNPs in total were identified for C22:6 n-3 within Phospholipid scramblase family member 5 (PLSCR5), Cytoplasmic linker associated protein 1 (CLASP1), and Chymosin (CYM). Notably, we found the top candidate SNP within SCD can explain ~ 7.37% of phenotypic variance for C14:1 cis-9. Moreover, we detected several blocks with high LD in the 100 kb region around SCD. In addition, we found three significant SNPs within a 100 kb region showing pleiotropic effects related to multiple FA groups (PUFA, n-6, and PUFA/SFA), which contains BAI1 associated protein 2 like 2 (BAIAP2L2), MAF bZIP transcription factor F (MAFF), and transmembrane protein 184B (TMEM184B). Conclusions Our study identified several significant SNPs and candidate genes for individual fatty acids and fatty acid groups in Chinese Wagyu cattle, and these findings will further assist the design of breeding programs for meat quality in cattle.
Collapse
Affiliation(s)
- Zezhao Wang
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,2National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bo Zhu
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hong Niu
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Wengang Zhang
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Ling Xu
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lei Xu
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,3Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Yan Chen
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lupei Zhang
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xue Gao
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huijiang Gao
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Shengli Zhang
- 2National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Lingyang Xu
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Junya Li
- 1Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|