1
|
Urakawa M, Zhuang T, Sato H, Takanashi S, Yoshimura K, Endo Y, Katsura T, Umino T, Tanaka K, Watanabe H, Kobayashi H, Takada N, Kozutsumi T, Kumagai H, Asano T, Sazawa K, Ashida N, Zhao G, Rose MT, Kitazawa H, Shirakawa H, Watanabe K, Nochi T, Nakamura T, Aso H. Prevention of mastitis in multiparous dairy cows with a previous history of mastitis by oral feeding with probiotic Bacillus subtilis. Anim Sci J 2022; 93:e13764. [PMID: 36085592 PMCID: PMC9541589 DOI: 10.1111/asj.13764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Mastitis is a very common inflammatory disease of the mammary gland of dairy cows, resulting in a reduction of milk production and quality. Probiotics may serve as an alternative to antibiotics to prevent mastitis, and the use of probiotics in this way may lessen the risk of antibiotic resistant bacteria developing. We investigated the effect of oral feeding of probiotic Bacillus subtilis (BS) C‐3102 strain on the onset of mastitis in dairy cows with a previous history of mastitis. BS feeding significantly decreased the incidence of mastitis, the average number of medication days and the average number of days when milk was discarded, and maintained the mean SCC in milk at a level substantially lower than the control group. BS feeding was associated with lower levels of cortisol and TBARS and increased the proportion of CD4+ T cells and CD11c+ CD172ahigh dendritic cells in the blood by flow cytometry analysis. Parturition increased the migrating frequency of granulocytes toward a milk chemoattractant cyclophilin A in the control cows, however, this was reduced by BS feeding, possibly indicating a decreased sensitivity of peripheral granulocytes to cyclophilin A. These results reveal that B. subtilis C‐3102 has potential as a probiotic and has preventative capacity against mastitis in dairy cows.
Collapse
Affiliation(s)
- Megumi Urakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tao Zhuang
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hidetoshi Sato
- Miyagi Prefectural Livestock Experiment Station, Osaki, Japan
| | - Satoru Takanashi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kozue Yoshimura
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yuma Endo
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Teppei Katsura
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tsuyoshi Umino
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Koutaro Tanaka
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hitoshi Watanabe
- Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Naokazu Takada
- Miyagi Prefectural Livestock Experiment Station, Osaki, Japan
| | | | - Hiroaki Kumagai
- Miyagi Prefectural Livestock Experiment Station, Osaki, Japan
| | - Takafumi Asano
- Miyagi Prefectural Livestock Experiment Station, Osaki, Japan
| | - Kohko Sazawa
- Miyagi Prefectural Livestock Experiment Station, Osaki, Japan
| | - Nobuhisa Ashida
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Michael T Rose
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Haruki Kitazawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hitoshi Shirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takehiko Nakamura
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,The Cattle Museum, Maesawa, Oshu, Japan
| |
Collapse
|
2
|
Talker SC, Baumann A, Barut GT, Keller I, Bruggmann R, Summerfield A. Precise Delineation and Transcriptional Characterization of Bovine Blood Dendritic-Cell and Monocyte Subsets. Front Immunol 2018; 9:2505. [PMID: 30425716 PMCID: PMC6218925 DOI: 10.3389/fimmu.2018.02505] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
A clear-cut delineation of bovine bona fide dendritic cells (DC) from monocytes has proved challenging, given the high phenotypic and functional plasticity of these innate immune cells and the marked phenotypic differences between species. Here, we demonstrate that, based on expression of Flt3, CD172a, CD13, and CD4, a precise identification of bovine blood conventional DC type 1 and 2 (cDC1, cDC2), plasmacytoid DC (pDC), and monocytes is possible with cDC1 being Flt3+CD172adimCD13+CD4−, cDC2 being Flt3+CD172a+CD13−CD4−, pDC being Flt3+CD172adimCD13−CD4+, and monocytes being Flt3−CD172ahighCD13−CD4−. The phenotype of these subsets was characterized in further detail, and a subset-specific differential expression of CD2, CD5, CD11b, CD11c, CD14, CD16, CD26, CD62L, CD71, CD163, and CD205 was found. Subset identity was confirmed by transcriptomic analysis and subset-specific transcription of conserved key genes. We also sorted monocyte subsets based on their differential expression of CD14 and CD16. Classical monocytes (CD14+CD16−) clustered clearly apart from the two CD16+ monocyte subsets probably representing intermediate and non-classical monocytes described in human. The transcriptomic data also revealed differential gene transcription for molecules involved in antigen presentation, pathogen sensing, and migration, and therefore gives insights into functional differences between bovine DC and monocyte subsets. The identification of cell-type- and subset-specific gene transcription will assist in the quest for “marker molecules” that—when targeted by flow cytometry—will greatly facilitate research on bovine DC and monocytes. Overall, species comparisons will elucidate basic principles of DC and monocyte biology and will help to translate experimental findings from one species to another.
Collapse
Affiliation(s)
- Stephanie C Talker
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Baumann
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Zhuang T, Urakawa M, Sato H, Sato Y, Taguchi T, Umino T, Katto S, Tanaka K, Yoshimura K, Takada N, Kobayashi H, Ito M, Rose MT, Kiku Y, Nagasawa Y, Kitazawa H, Watanabe K, Nochi T, Hayashi T, Aso H. Phenotypic and functional analysis of bovine peripheral blood dendritic cells before parturition by a novel purification method. Anim Sci J 2018; 89:1011-1019. [PMID: 29708291 PMCID: PMC6055732 DOI: 10.1111/asj.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are specialized antigen presenting cells specializing in antigen uptake and processing, and play an important role in the innate and adaptive immune response. A subset of bovine peripheral blood DCs was identified as CD172a+/CD11c+/MHC (major histocompatibility complex) class II+ cells. Although DCs are identified at 0.1%–0.7% of peripheral blood mononuclear cells (PBMC), the phenotype and function of DCs remain poorly understood with regard to maintaining tolerance during the pregnancy. All cattle used in this study were 1 month before parturition. We have established a novel method for the purification of DCs from PBMC using magnetic‐activated cell sorting, and purified the CD172a+/CD11c+DCs, with high expression of MHC class II and CD40, at 84.8% purity. There were individual differences in the expressions of CD205 and co‐stimulatory molecules CD80 and CD86 on DCs. There were positive correlations between expression of cytokine and co‐stimulatory molecules in DCs, and the DCs maintained their immune tolerance, evidenced by their low expressions of the co‐stimulatory molecules and cytokine production. These results suggest that before parturition a half of DCs may be immature and tend to maintain tolerance based on the low cytokine production, and the other DCs with high co‐stimulatory molecules may already have the ability of modulating the T‐cell linage.
Collapse
Affiliation(s)
- Tao Zhuang
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Megumi Urakawa
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hidetoshi Sato
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Yuko Sato
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Teruaki Taguchi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tsuyoshi Umino
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Shiro Katto
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Koutaro Tanaka
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kozue Yoshimura
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Naokazu Takada
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Hiroko Kobayashi
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Megumi Ito
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Michael T Rose
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Cardiganshire, UK
| | - Yoshio Kiku
- Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Yuya Nagasawa
- Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kouichi Watanabe
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomonori Nochi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomohito Hayashi
- Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|