1
|
Roques S, Martinez-Fernandez G, Ramayo-Caldas Y, Popova M, Denman S, Meale SJ, Morgavi DP. Recent Advances in Enteric Methane Mitigation and the Long Road to Sustainable Ruminant Production. Annu Rev Anim Biosci 2024; 12:321-343. [PMID: 38079599 DOI: 10.1146/annurev-animal-021022-024931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Mitigation of methane emission, a potent greenhouse gas, is a worldwide priority to limit global warming. A substantial part of anthropogenic methane is emitted by the livestock sector, as methane is a normal product of ruminant digestion. We present the latest developments and challenges ahead of the main efficient mitigation strategies of enteric methane production in ruminants. Numerous mitigation strategies have been developed in the last decades, from dietary manipulation and breeding to targeting of methanogens, the microbes that produce methane. The most recent advances focus on specific inhibition of key enzymes involved in methanogenesis. But these inhibitors, although efficient, are not affordable and not adapted to the extensive farming systems prevalent in low- and middle-income countries. Effective global mitigation of methane emissions from livestock should be based not only on scientific progress but also on the feasibility and accessibility of mitigation strategies.
Collapse
Affiliation(s)
- Simon Roques
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| | | | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain;
| | - Milka Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| | - Stuart Denman
- Agriculture and Food, CSIRO, St. Lucia, Queensland, Australia; ,
| | - Sarah J Meale
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Gatton, Queensland, Australia;
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| |
Collapse
|
2
|
Sarmikasoglou E, Sumadong P, Roesch LFW, Halima S, Arriola K, Yuting Z, Jeong KCC, Vyas D, Hikita C, Watanabe T, Faciola A. Effects of cashew nut shell extract and monensin on in vitro ruminal fermentation, methane production, and ruminal bacterial community. J Dairy Sci 2024; 107:840-856. [PMID: 37730175 DOI: 10.3168/jds.2023-23669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
The objective of this study was to evaluate the effects of cashew nut shell extract (CNSE) and monensin on ruminal in vitro fermentation, CH4 production, and ruminal bacterial community structure. Treatments were as follows: control (CON, basal diet without additives); 2.5 μM monensin (MON); 0.1 mg CNSE granule/g DM (CNSE100); and 0.2 mg CNSE granule/g DM (CNSE200). Each treatment was incubated with 52 mL of buffered ruminal content and 500 mg of total mixed ration for 24 h using serum vials. The experiment was performed as a complete randomized block design with 3 runs. Run was used as a blocking factor. Each treatment had 5 replicates, in which 2 were used to determine nutrient degradability, and 3 were used to determine pH, NH3-N, volatile fatty acids, lactate, total gas, CH4 production, and bacterial community composition. Treatment responses for all data, excluding bacterial abundance, were analyzed with the GLIMMIX procedure of SAS v9.4. Treatment responses for bacterial community structure were analyzed with a PERMANOVA test run with the R package vegan. Orthogonal contrasts were used to test the effects of (1) additive inclusion (ADD: CON vs. MON, CNSE100, and CNSE200); (2) additive type (MCN: MON vs. CNSE100 and CNSE200); and (3) CNSE dose (DOS: CNSE100 vs. CNSE200). We observed that pH, acetate, and acetate:propionate ratio in the CNSE100 treatment were lower compared with CNSE200, and propionate in the CNSE100 treatment was greater compared with CNSE200. Compared with MON, CNSE treatments tended to decrease total lactate concentration. Total gas production of CON was greater by 2.63% compared with all treatments, and total CH4 production was reduced by 10.64% in both CNSE treatments compared with MON. Also, compared with MON, in vitro dry matter degradabilities in CNSE treatments were lower. No effects were observed for NH3-N or in vitro neutral detergent fiber degradability. Finally, the relative abundances of Prevotella, Treponema, and Schwartzia were lower, whereas the relative abundances of Butyrivibrio and Succinivibrio were greater in all treatments compared with CON. Overall, the inclusion of CNSE decreased CH4 production compared with MON, making CNSE a possible CH4 mitigation additive in dairy cattle diets.
Collapse
Affiliation(s)
- E Sarmikasoglou
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - P Sumadong
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611; Department of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - L F W Roesch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603
| | - S Halima
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - K Arriola
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Z Yuting
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - K C C Jeong
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - D Vyas
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - C Hikita
- SDS Biotech K.K., Tokyo, Japan 101-0022
| | | | - A Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
3
|
Sarmikasoglou E, Sumadong P, Roesch LF, Halima S, Hikita C, Watanabe T, Faciola A. Effects of monensin and cashew nut-shell extract on bacterial community composition in a dual-flow continuous culture system. Transl Anim Sci 2023; 8:txad148. [PMID: 38221956 PMCID: PMC10787353 DOI: 10.1093/tas/txad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
The objective of this study was to evaluate the effects of including monensin and two doses of CNSE in a high producing dairy cow diet on ruminal bacterial communities. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin Square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per d (17% crude protein and 27% starch). There were four experimental treatments: the basal diet without any feed additive (CON), 2.5 μM monensin (MON), 100 ppm CNSE granule (CNSE100), and 200 ppm CNSE granule (CNSE200). Samples were collected from the fluid and solid effluents at 3, 6, and 9 h after feeding; a composite of all time points was made for each fermenter within their respective fractions. Bacterial community composition was analyzed by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Treatment responses for bacterial community structure were analyzed with the PERMANOVA test run with the R Vegan package. Treatment responses for correlations were analyzed with the CORR procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). Significance was declared at P ≤ 0.05. We observed that the relative abundance of Sharpea (P < 0.01), Mailhella (P = 0.05), Ruminococcus (P = 0.03), Eubacterium (P = 0.01), and Coprococcus (P < 0.01) from the liquid fraction and the relative abundance of Ruminococcus (P = 0.03) and Catonella (P = 0.02) from the solid fraction decreased, while the relative abundance of Syntrophococcus (P = 0.02) increased in response to MON when compared to CNSE treatments. Our results demonstrate that CNSE and monensin have similar effects on the major ruminal bacterial genera, while some differences were observed in some minor genera. Overall, the tested additives would affect the ruminal fermentation in a similar pattern.
Collapse
Affiliation(s)
- Efstathios Sarmikasoglou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
| | - Phussorn Sumadong
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
- Department of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Luiz Fernando Roesch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32603 FL, USA
| | - Sultana Halima
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
| | - Chie Hikita
- Product Development Department, SDS Biotech K.K., Tokyo 101-0022, Japan
| | - Tomonori Watanabe
- Product Development Department, SDS Biotech K.K., Tokyo 101-0022, Japan
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
| |
Collapse
|
4
|
Narabe C, Kamiyama S, Saito M, Boonsaen P, Khongpradit A, Sawanon S, Suzuki Y, Koike S, Kobayashi Y. Cashew nut shell liquid potentially mitigates methane emission from the feces of Thai native ruminant livestock by modifying fecal microbiota. Anim Sci J 2021; 92:e13614. [PMID: 34405934 DOI: 10.1111/asj.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
The methane-mitigating potency of cashew nutshell liquid (CNSL) was evaluated by investigating gas production from batch cultures using feces from Thai native ruminants that had been incubated for different periods. Feces was obtained from four Thai native cattle and four swamp buffaloes reared under practical feeding conditions at the Kasetsart University farm, Thailand. Fecal slurry from the same farm was also included in the analysis. CNSL addition successfully suppressed the methane production potential of feces from both ruminants by shifting short chain fatty acid profiles towards propionate production. Methane mitigation continued for almost 150 days, although the degree of mitigation was more apparent from Day 0 to Day 30. Bacterial and archaeal community shifts with CNSL addition were observed in feces from both ruminants; specifically, Bacteroides increased, whereas Lachnospiraceae and Ruminococcaceae decreased in feces to which CNSL was added. Fecal slurry did not show marked changes in gas production with CNSL addition. The findings showed that the addition of CNSL to the feces of ruminants native to the Southeast Asian region can suppress methane emission. Because CNSL can be easily obtained as a byproduct of the local cashew industry in this region, its on-site application might be ideal.
Collapse
Affiliation(s)
- Chiaki Narabe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Saki Kamiyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mizuki Saito
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Phoompong Boonsaen
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Anchalee Khongpradit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Suriya Sawanon
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yutaka Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|