1
|
Sönmez Hİ, Madak E, Karaer MC, Sarımehmetoğlu HO. Anthelmintic Resistance in Ancylostoma caninum: A Comprehensive Review. Vet Med Sci 2025; 11:e70434. [PMID: 40434926 PMCID: PMC12118500 DOI: 10.1002/vms3.70434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
Ancylostoma caninum, a zoonotic hookworm species, significantly affects the global health of companion animals, humans and wildlife populations. This parasitic infection is prevalent in various environments, particularly in regions with warm climates, and affects a wide range of canids, including dogs, where it is most commonly found. A. caninum is a major concern not only due to its zoonotic potential but also because of its growing resistance to anthelmintic treatments. The development of resistance in parasitic species is primarily driven by genetic mutations that allow the parasite to survive treatment with commonly used drugs and presents a serious challenge to parasite control efforts. This review explores the biology and epidemiology of A. caninum, focusing on the mechanisms and prevalence of anthelmintic resistance. By reviewing worldwide studies, this paper highlights the prevalence of resistance across different anthelmintic classes and its implications for veterinary and public health. The findings emphasize the need for better management strategies and innovative solutions to address this growing problem.
Collapse
Affiliation(s)
- Hande İrem Sönmez
- Graduate School of Health Science, Ankara UniversityAnkaraTürkiye
- Department of ParasitologyFaculty of Veterinary MedicineAnkara UniversityAnkaraTürkiye
| | - Elif Madak
- Graduate School of Health Science, Ankara UniversityAnkaraTürkiye
| | - Mina Cansu Karaer
- Institute of Preclinical SciencesVeterinary FacultyUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
2
|
Tenorio JCB, Heikal MF, Kafle A, Macalalad MAB, Orosco FL, Saichua P, Suttiprapa S. Unraveling the mechanisms of benzimidazole resistance in hookworms: A molecular docking and dynamics study. J Genet Eng Biotechnol 2025; 23:100472. [PMID: 40074446 PMCID: PMC11879688 DOI: 10.1016/j.jgeb.2025.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Benzimidazole resistance is an emerging challenge among parasitic helminths. It is caused by single nucleotide polymorphisms (SNPs) in specific loci in helminths' β-tubulin genes. Field studies and laboratory investigations reported resistance-associated SNPs in 4 codon locations with 7 allelic variations among hookworms. This study aimed to determine the effects of these mutations on the binding efficiency and behavior of the β-tubulin protein in four hookworm species against four benzimidazole drugs. METHODS β-tubulin gene coding sequences of Ancylostoma caninum, A. duodenale, A. ceylanicum, and Necator americanus were retrieved, assessed phylogenetically, and used to construct the 3D structure models of the proteins. The modeled protein structures were verified and edited to contain the reported SNPs: Q134H, F167Y, E198A, E198K, E198V, F200L, and F200Y. Benzimidazole drugs such as albendazole (ABZ), fenbendazole (FBZ), mebendazole (MBZ) and oxfendazole (OBZ) were used as ligands. Molecular docking experiments were performed with the wild-type and mutated proteins. Molecular dynamics simulation assessed the dynamic behavior of the β-tubulin-benzimidazole complex. RESULTS In silico docking assessments showed that various amino acid substitutions due to resistance-associated SNPs cause alterations in binding affinities and positions. E198K and Q134H in hookworm β-tubulins substantially weakened the binding affinities and altered the binding positions of benzimidazole drugs. Molecular dynamics analysis revealed that these mutations also caused marked reductions in the binding free energies owing to diminished hydrogen bond contacts with the benzimidazole ligands. CONCLUSION The evidence shown herein indicates that mutations at positions 198 and 134 are detrimental to conferring benzimidazole resistance among hookworms. The presence of these mutations may alter the efficacy of pharmacological interventions. Hence, further studies should be conducted to assess their emergence among hookworms in endemic areas with histories of chemotherapy.
Collapse
Affiliation(s)
- Jan Clyden B Tenorio
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of Southern Mindanao, Kabacan, 9407 Cotabato, Philippines
| | - Muhammad Fikri Heikal
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alok Kafle
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mark Andrian B Macalalad
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631 Taguig City, Metro Manila, Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631 Taguig City, Metro Manila, Philippines; S&T Fellows Program, Department of Science and Technology, 1631 Taguig City, Metro Manila, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila 1000 Manila, Metro Manila, Philippines
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
3
|
Abdullah S, Stocker T, Kang H, Scott I, Hayward D, Jaensch S, Ward MP, Jones MK, Kotze AC, Šlapeta J. Widespread occurrence of benzimidazole resistance single nucleotide polymorphisms in the canine hookworm, Ancylostoma caninum, in Australia. Int J Parasitol 2025; 55:173-182. [PMID: 39716589 DOI: 10.1016/j.ijpara.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Canine hookworm (Ancylostoma caninum), a gastrointestinal nematode of domestic dogs, principally infects the small intestine of dogs and has the potential to cause zoonotic disease. In greyhounds and pet dogs in the USA, A. caninum has been shown to be resistant to multiple anthelmintics. We conducted a molecular survey of benzimidazole resistance in A. caninum from dogs at veterinary diagnostic centers in Australia and New Zealand. First, we implemented an internal transcribed spacer (ITS)-2 rDNA deep amplicon metabarcoding sequencing approach to ascertain the species of hookworms infecting dogs in the region. Then, we evaluated the frequency of the canonical F167Y and Q134H isotype-1 β-tubulin mutations, which confer benzimidazole resistance, using the same sequencing approach. The most detected hookworm species in diagnostic samples was A. caninum (90%; 83/92); the related Northern hookworm (Uncinaria stenocephala) was identified in 11% (10/92) of the diagnostic samples. There was a single sample with coinfection by A. caninum and U. stenocephala. Both isotype-1 β-tubulin mutations were present in A. caninum, 49% and 67% for Q134H and F167Y, respectively. Mutation F167Y in the isotype-1 β-tubulin mutation was recorded in U. stenocephala for the first known time. Canonical benzimidazole resistance codons 198 and 200 mutations were absent. Egg hatch assays performed on a subset of the A. caninum samples showed significant correlation between 50% inhibitory concentration (IC50) to thiabendazole and F167Y, with an increased IC50 for samples with > 75% F167Y mutation. We detected 14% of dogs with > 75% F167Y mutation in A. caninum. Given that these samples were collected from dogs across various regions of Australia, the present study suggests that benzimidazole resistance in A. caninum is widespread. Therefore, to mitigate the risk of resistance selection and further spread, adoption of a risk assessment-based approach to limit unnecessary anthelmintic use should be a key consideration for future parasite control.
Collapse
Affiliation(s)
- Swaid Abdullah
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia.
| | - Thomas Stocker
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Hyungsuk Kang
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Ian Scott
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Douglas Hayward
- Vetnostics NSW - North Ryde Laboratory, Macquarie Park, New South Wales, Australia
| | - Susan Jaensch
- Vetnostics NSW - North Ryde Laboratory, Macquarie Park, New South Wales, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Malcolm K Jones
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Andrew C Kotze
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Tenorio JCB, Heikal MF, Kafle A, Saichua P, Suttiprapa S. Benzimidazole Resistance-Associated Mutations in the β-tubulin Gene of Hookworms: A Systematic Review. Parasitol Res 2024; 123:405. [PMID: 39652258 DOI: 10.1007/s00436-024-08432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
There is a growing number of reports on the occurrence of benzimidazole resistance-associated single nucleotide polymorphisms (SNPs) in the β-tubulin isotype 1 gene of various helminths of veterinary, and public health concerns. However, a comprehensive analysis of their occurrence, and their contributions to conferring benzimidazole resistance among hookworms has yet to be done. The objectives of this systematic review are to summarize and synthesize peer-reviewed evidence on the occurrence of these resistance-associated mutations in hookworms, document their geographical distribution, and assess their contributions to conferring phenotypic resistance. Three databases were systematically searched using specific keywords. Research that assessed the occurrence of benzimidazole resistance-associated SNPs in hookworms, papers that reported the geographical distribution of these SNPs, and studies that investigated the SNPs' resistance-associated phenotypic effects were included in the review. Research that was not done in hookworms, papers not in the English language, and literature reviews and book chapters were excluded. Critical appraisal checklists were used to determine the risk of bias in the selected papers. Data were extracted from the selected studies and analyzed. PROSPERO Systematic Review Protocol Registration No.: CRD42024510924. A total of 29 studies were included and analyzed. Of these, four were conducted in a laboratory setting, eight described the development and validation of SNP detection methods, and the remaining 17 involved field research. Seven SNP-induced amino acid substitutions at four loci were reported among several hookworm species: Q134H, F167Y, E198A, E198K, E198V, F200Y, and F200L. SNPs have been reported in isolates occurring in the United States, Canada, Brazil, Haiti, Australia, New Zealand, Kenya, Ghana, Mozambique, and Tanzania. Resistance mutations have not been reported in Asia. E198A and F200L were reported in Ancylostoma ceylanicum with laboratory-induced resistance. F167Y and Q134H conferred resistance in A. caninum, as revealed by in vitro investigations and field assessments. There is insufficient peer-reviewed evidence to prove the association between SNP occurrence and resistance. Mutations in the β-tubulin isotype 1 gene confer benzimidazole resistance in A. caninum and A. ceylanicum, but similar evidence is lacking for other human hookworms. Understanding benzimidazole resistance through further research can better inform treatment, prevention, and control strategies.
Collapse
Affiliation(s)
- Jan Clyden B Tenorio
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Muhammad Fikri Heikal
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alok Kafle
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
5
|
Tenorio JCB, Heikal MF, Kafle A, Saichua P, Suttiprapa S. Benzimidazole resistance-associated mutations improve the in silico dimerization of hookworm tubulin: An additional resistance mechanism. Vet World 2024; 17:2736-2746. [PMID: 39897360 PMCID: PMC11784061 DOI: 10.14202/vetworld.2024.2736-2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/07/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim Mutations in the β-tubulin genes of helminths confer benzimidazole (BZ) resistance by reducing the drug's binding efficiency to the expressed protein. However, the effects of these resistance-associated mutations on tubulin dimer formation in soil-transmitted helminths remain unknown. Therefore, this study aimed to investigate the impact of these mutations on the in silico dimerization of hookworm α- and β-tubulins using open-source bioinformatics tools. Materials and Methods Using AlphaFold 3, the α- and β-tubulin amino acid sequences of Ancylostoma ceylanicum were used to predict the structural fold of the hookworm tubulin heterodimer. The modeled complexes were subjected to several protein structure quality assurance checks. The binding free energies, overall binding affinity, dissociation constant, and interacting amino acids of the complex were determined. The dimer's structural flexibility and motion were simulated through molecular dynamics. Results BZ resistance-associated amino acid substitutions in the β-tubulin isotype 1 protein of hookworms altered tubulin dimerization. The E198K, E198V, and F200Y mutations conferred the strongest and most stable binding between the α and β subunits, surpassing that of the wild-type. In contrast, complexes with the Q134H and F200L mutations exhibited the opposite effect. Molecular dynamics simulations showed that wild-type and mutant tubulin dimers exhibited similar dynamic behavior, with slight deviations in those carrying the F200L and E198K mutations. Conclusion Resistance-associated mutations in hookworms impair BZ binding to β-tubulin and enhance tubulin dimer interactions, thereby increasing the parasite's ability to withstand treatment. Conversely, other mutations weaken these interactions, potentially compromising hookworm viability. These findings offer novel insights into helminth tubulin dimerization and provide a valuable foundation for developing anthelmintics targeting this crucial biological process.
Collapse
Affiliation(s)
- Jan Clyden B. Tenorio
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of Southern Mindanao, Kabacan 9407, Cotabato, Philippines
| | - Muhammad Fikri Heikal
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alok Kafle
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Moraes IDS, Silva VLDB, de Andrade-Silva BE, Gomes APN, de Urzedo NF, Abolis VB, Gonçalves RDS, Arpon KV, de Assis-Silva ZM, da Silva LF, Zago EA, Gonçalves MB, Braga ÍA, Saturnino KC, Colodel EM, Júnior AM, Pacheco RDC, Ramos DGDS. Gastrointestinal Helminths in Wild Felids in the Cerrado and Pantanal: Zoonotic Bioindicators in Important Brazilian Biomes. Animals (Basel) 2024; 14:1622. [PMID: 38891670 PMCID: PMC11171020 DOI: 10.3390/ani14111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Environmental changes in the Brazilian Pantanal and Cerrado facilitate the spread of parasitic diseases in wildlife, with significant implications for public health owing to their zoonotic potential. This study aimed to examine the occurrence and diversity of gastrointestinal parasites in wild felids within these regions to assess their ecological and health impacts. We collected and analyzed helminth-positive samples from 27 wild felids using specific taxonomic keys. Diverse parasitic taxa were detected, including zoonotic helminths, such as Ancylostoma braziliense, Ancylostoma caninum, Ancylostoma pluridentatum, Toxocara cati, Toxocara canis, Dipylidium caninum, Taenia spp., Echinococcus spp., and Spirometra spp. Other nematodes, such as Physaloptera praeputialis and Physaloptera anomala, were identified, along with acanthocephalans from the genus Oncicola and a trematode, Neodiplostomum spp. (potentially the first record of this parasite in wild felids in the Americas). Human encroachment into natural habitats has profound effects on wild populations, influencing parasitic infection rates and patterns. This study underscores the importance of continuous monitoring and research on parasitic infections as a means of safeguarding both wildlife and human populations and highlights the role of wild felids as bioindicators of environmental health.
Collapse
Affiliation(s)
- Iago de Sá Moraes
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Victória Luiza de Barros Silva
- Laboratório de Parasitologia Veterinária e Doenças Parasitárias dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (V.L.d.B.S.); (E.A.Z.); (M.B.G.); (R.d.C.P.)
| | - Beatriz Elise de Andrade-Silva
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Ana Paula Nascimento Gomes
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Nicoly Ferreira de Urzedo
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Vitória Breda Abolis
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Renata de Souza Gonçalves
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Karina Varella Arpon
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Zara Mariana de Assis-Silva
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Lizandra Fernandes da Silva
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Ellen Amanda Zago
- Laboratório de Parasitologia Veterinária e Doenças Parasitárias dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (V.L.d.B.S.); (E.A.Z.); (M.B.G.); (R.d.C.P.)
| | - Michelle Benevides Gonçalves
- Laboratório de Parasitologia Veterinária e Doenças Parasitárias dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (V.L.d.B.S.); (E.A.Z.); (M.B.G.); (R.d.C.P.)
| | - Ísis Assis Braga
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Klaus Casaro Saturnino
- Laboratório de Anatomia Patológica Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil;
| | - Edson Moleta Colodel
- Laboratório de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil;
| | - Arnaldo Maldonado Júnior
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Richard de Campos Pacheco
- Laboratório de Parasitologia Veterinária e Doenças Parasitárias dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (V.L.d.B.S.); (E.A.Z.); (M.B.G.); (R.d.C.P.)
| | - Dirceu Guilherme de Souza Ramos
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| |
Collapse
|
7
|
Stocker T, Ward MP, Šlapeta J. Nationwide USA re-analysis of amplicon metabarcoding targeting β-tubulin isoform-1 reveals absence of benzimidazole resistant SNPs in Ancylostoma braziliense, Ancylostoma tubaeforme and Uncinaria stenocephala. Vet Parasitol 2024; 327:110118. [PMID: 38278035 DOI: 10.1016/j.vetpar.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Nationwide sampling by Venkatesan and colleagues (2023) described the resistance status of the canine hookworm, Ancylostoma caninum, to benzimidazoles across the USA via β-tubulin isotype-1 amplicon metabarcoding. In this study, we aimed to use the existing public amplicon metabarcoding data and mine it for the presence of β-tubulin isotype-1 sequences that belong to hookworm species other than A. caninum. Through bioinformatics analysis we assigned species to A. caninum, Ancylostoma braziliense, Ancylostoma tubaeforme and Uncinaria stenocephala. All non-A. caninum sequences contained only the benzimidazole susceptible residues of β-tubulin isotype-1. Using two β-tubulin isotype-1 metabarcoding sequence data (assay targeting 134 and 167 codons, and assay targeting 198 and 200 codons), 2.0% (6/307) and 2.9% (9/310) individual samples had hookworms other than A. caninum (A. braziliense n = 5, A. tubaeforme n = 4 and U. stenocephala n = 2), respectively. We identified one sample containing A. braziliense in each of the Northeastern region and Midwestern region, and in three samples from the Southern region. Presence of A. tubaeforme in dog faeces is considered as pseudoparasitism. There were no statistically significant regional differences for the distribution of each species, for either of the two assays independently or combined (χ2 tests, P > 0.05). Our work demonstrates the utility of the amplicon metabarcoding for the identification of species through antemortem assays, thus resolving the dilemma of assigning hookworm species based on either post-mortem or egg sizes for the identification of hookworms.
Collapse
Affiliation(s)
- Thomas Stocker
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia; The University of Sydney Institute for Infectious Diseases, New South Wales 2006, Australia.
| |
Collapse
|