1
|
Jung D, Bachmann HS. Regulation of protein prenylation. Biomed Pharmacother 2023; 164:114915. [PMID: 37236024 DOI: 10.1016/j.biopha.2023.114915] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Prenyltransferases (PTases) are known to play a role in embryonic development, normal tissue homeostasis and cancer by posttranslationally modifying proteins involved in these processes. They are being discussed as potential drug targets in an increasing number of diseases, ranging from Alzheimer's disease to malaria. Protein prenylation and the development of specific PTase inhibitors (PTIs) have been subject to intense research in recent decades. Recently, the FDA approved lonafarnib, a specific farnesyltransferase inhibitor that acts directly on protein prenylation; and bempedoic acid, an ATP citrate lyase inhibitor that might alter intracellular isoprenoid composition, the relative concentrations of which can exert a decisive influence on protein prenylation. Both drugs represent the first approved agent in their respective substance class. Furthermore, an overwhelming number of processes and proteins that regulate protein prenylation have been identified over the years, many of which have been proposed as molecular targets for pharmacotherapy in their own right. However, certain aspects of protein prenylation, such as the regulation of PTase gene expression or the modulation of PTase activity by phosphorylation, have attracted less attention, despite their reported influence on tumor cell proliferation. Here, we want to summarize the advances regarding our understanding of the regulation of protein prenylation and the potential implications for drug development. Additionally, we want to suggest new lines of investigation that encompass the search for regulatory elements for PTases, especially at the genetic and epigenetic levels.
Collapse
Affiliation(s)
- Dominik Jung
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Hagen S Bachmann
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
2
|
Verhasselt H, Stelmach P, Domin M, Jung D, Hagemann A, Manthey I, Bachmann HS. Characterization of the promoter of the human farnesyltransferase beta subunit and the impact of the transcription factor OCT-1 on its expression. Genomics 2022; 114:110314. [DOI: 10.1016/j.ygeno.2022.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/14/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022]
|
3
|
Bachmann HS, Jung D, Link T, Arnold A, Kantelhardt E, Thomssen C, Wimberger P, Vetter M, Kuhlmann JD. FNTB Promoter Polymorphisms Are Independent Predictors of Survival in Patients with Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030468. [PMID: 35158735 PMCID: PMC8833514 DOI: 10.3390/cancers14030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
In breast cancer, the promising efficacy of farnesyltransferase inhibitors (FTIs) in preclinical studies is in contrast to only limited effects in clinical Phase II–III trials. The objective of this study was to explore the clinical relevance of farnesyltransferase β-subunit (FNTB) single nucleotide promoter polymorphisms (FNTB-173 6G > 5G (rs3215788), -609 G > C (rs11623866) and -179 T > A (rs192403314)) in early breast cancer. FNTB genotyping was performed by pyrosequencing in 797 patients from a prospective multicentre observational PiA trial (NCT 01592825). In the total cohort, the FNTB-173 6G > 5G polymorphism was an independent predictor of RFI (HR = 0.568; 95% CI = 0.339–0.949, p = 0.031), OS (HR = 0.629; 95% CI = 0.403–0.980, p = 0.040) and BCSS (HR = 0.433; 95% CI = 0.213–0.882; p = 0.021), whereas the FNTB-609 G > C polymorphism was an independent predictor of RFI (HR = 0.453; 95% CI = 0.226–0.910, p = 0.026) and BCSS (HR = 0.227; 95% CI = 0.075–0.687, p = 0.009). Subtype analysis revealed the independent prognostic relevance of FNTB promoter polymorphisms, particularly in TNBC but not in luminal or HER2-positive intrinsic subtypes. Finally, we used electrophoretic mobility shift assays (EMSAs) to confirm in vitro that the polymorphism FNTB-173 6G > 5G resulted in the differential binding of nuclear proteins from five different breast cancer cell lines. This is the first study on breast cancer suggesting that FNTB promoter polymorphisms (i) are independent prognostic biomarkers, particularly in patients with early TNBC, and (ii) could modulate FNTB’s transcriptional activity.
Collapse
Affiliation(s)
- Hagen Sjard Bachmann
- Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (H.S.B.); (D.J.); (A.A.)
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Dominik Jung
- Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (H.S.B.); (D.J.); (A.A.)
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Arnold
- Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (H.S.B.); (D.J.); (A.A.)
| | - Eva Kantelhardt
- Department of Gynecology, Martin Luther University Halle Wittenberg, 06120 Halle, Germany; (E.K.); (C.T.); (M.V.)
- Institute of Medical Epidemiology, Bioinformatics and Statistics, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Christoph Thomssen
- Department of Gynecology, Martin Luther University Halle Wittenberg, 06120 Halle, Germany; (E.K.); (C.T.); (M.V.)
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martina Vetter
- Department of Gynecology, Martin Luther University Halle Wittenberg, 06120 Halle, Germany; (E.K.); (C.T.); (M.V.)
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-351-458-2434
| |
Collapse
|
4
|
Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B. Int J Mol Sci 2021; 22:ijms22052501. [PMID: 33801503 PMCID: PMC7958859 DOI: 10.3390/ijms22052501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.
Collapse
|
5
|
Hagemann A, Müller G, Manthey I, Bachmann HS. Exploring the putative self-binding property of the human farnesyltransferase alpha-subunit. FEBS Lett 2017; 591:3637-3648. [PMID: 28948621 DOI: 10.1002/1873-3468.12862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023]
Abstract
Farnesylation is an important post-translational protein modification in eukaryotes. Farnesylation is performed by protein farnesyltransferase, a heterodimer composed of an α- (FTα) and a β-subunit. Recently, homodimerization of truncated rat and yeast FTα has been detected, suggesting a new role for FTα homodimers in signal transduction. We investigated the putative dimerization behaviour of human and rat FTα. Different in vitro and in vivo approaches revealed no self-dimerization and a presumably artificial formation of homotrimers and higher homo-oligomers in vitro. Our study contributes to the clarification of the physiological features of FTase in different species and may be important for the ongoing development of FTase inhibitors.
Collapse
Affiliation(s)
- Anna Hagemann
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Grit Müller
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Iris Manthey
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Hagen S Bachmann
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, Germany.,Institute of Pharmacology and Toxicology, School of Medicine, Faculty of Health, Witten/Herdecke University, Germany
| |
Collapse
|
6
|
Zhang J, Park D, Shin DM, Deng X. Targeting KRAS-mutant non-small cell lung cancer: challenges and opportunities. Acta Biochim Biophys Sin (Shanghai) 2016; 48:11-6. [PMID: 26578706 DOI: 10.1093/abbs/gmv118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS) occur in 15%-30% of non-small cell lung cancer (NSCLC). However, despite decades of intensive research, there is still no direct KRAS inhibitor with clinically proven efficacy. Considering its association with poor treatment response and prognosis of lung cancer, developing an effective inhibitory approach is urgently needed. Here, we review different strategies currently being explored to target KRAS-mutant NSCLC, discuss opportunities and challenges, and also propose some novel methods and concepts with the promise of clinical application.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA Department of Internal Medicine, Division of Hematology, Oncology and Blood & Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|