1
|
Fotopoulou E, Lykogianni M, Papadimitriou E, Mavrikou S, Machera K, Kintzios S, Thomaidou D, Aliferis ΚΑ. Mining the effect of the neonicotinoids imidacloprid and clothianidin on the chemical homeostasis and energy equilibrium of primary mouse neural stem/progenitor cells using metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104617. [PMID: 32711778 DOI: 10.1016/j.pestbp.2020.104617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The projection of plant protection products' (PPPs) toxicity to non-target organisms at early stages of their development is challenging and demanding. Recent developments in bioanalytics, however, have facilitated the study of fluctuations in the metabolism of biological systems in response to treatments with bioactives and the discovery of corresponding toxicity biomarkers. Neonicotinoids are improved insecticides that target nicotinic acetylocholine receptors (nAChR) in insects which are similar to mammals. Nonetheless, they have sparked controversy due to effects on non-target organisms. Within this context, mammalian cell cultures represent ideal systems for the development of robust models for the dissection of PPPs' toxicity. Thus, we have investigated the toxicity of imidacloprid, clothianidin, and their mixture on primary mouse (Mus musculus) neural stem/progenitor (NSPCs) and mouse neuroblastoma-derived Neuro-2a (N2a) cells, and the undergoing metabolic changes applying metabolomics. Results revealed that NSPCs, which in vitro resemble those that reside in the postnatal and adult central nervous system, are five to seven-fold more sensitive than N2a to the applied insecticides. The energy equilibrium of NSPCs was substantially altered, as it is indicated by fluctuations of metabolites involved in energy production (e.g. glucose, lactate), Krebs cycle intermediates, and fatty acids, which are important components of cell membranes. Such evidence plausibly suggests a switch of cells' energy-producing mechanism to the direct metabolism of glucose to lactate in response to insecticides. The developed pipeline could be further exploited in the discovery of unintended effects of PPPs at early steps of development and for regulatory purposes.
Collapse
Affiliation(s)
- E Fotopoulou
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - M Lykogianni
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, St. Delta 8, 14561 Kifissia, Greece
| | - E Papadimitriou
- Neural Stem Cells and Neuroimaging Group, Neurobiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece
| | - S Mavrikou
- Laboratory of Cell Technology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - K Machera
- Laboratory of Toxicological Control of Pesticides, Benaki Phytopathological Institute, St. Delta 8, 14561 Kifissia, Greece
| | - S Kintzios
- Laboratory of Cell Technology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - D Thomaidou
- Neural Stem Cells and Neuroimaging Group, Neurobiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece.
| | - Κ Α Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Department of Plant Science, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9C, Canada.
| |
Collapse
|
2
|
Flaskos J. The Neuronal Cytoskeleton as a Potential Target in the Developmental Neurotoxicity of Organophosphorothionate Insecticides. Basic Clin Pharmacol Toxicol 2014; 115:201-8. [DOI: 10.1111/bcpt.12204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Affiliation(s)
- John Flaskos
- School of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|