1
|
Lai J, Chen G, Su H, He Q, Xiao K, Liao B, Ai J. β-Adrenoceptor Signaling Activation Improves Bladder Fibrosis by Inhibiting Extracellular Matrix Deposition of Bladder Outlet Obstruction. FRONT BIOSCI-LANDMRK 2024; 29:336. [PMID: 39344310 DOI: 10.31083/j.fbl2909336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 12/29/2022] [Indexed: 10/01/2024]
Abstract
BACKGROUND Partial bladder outlet obstruction (pBOO) causes deposition of extracellular matrix (ECM), promotes bladder fibrosis, and decreases bladder compliance. METHODS To investigate the effect of β-adrenoceptor (ADRB) on the ECM deposition of pBOO rat model and explore its underlying mechanism, human bladder smooth muscle cells (hBSMCs) were exposed to the pathological hydrostatic pressure (100 cm H2O) for 6 h, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were employed. Then the rats of sham operation and pBOO model were treated with vehicle or ADRB agonists for 3 weeks, and the alterations of the bladder were observed via Masson staining and immunohistochemical analysis. RESULTS 100 cm H2O hydrostatic pressure significantly upregulated the expression of collagen I (COL1), collagen III (COL3) and fibronectin (FN), and downregulated the expression of ADRB2 and ADRB3 of hBSMCs at 6 h. The agonists of ADRB2 and ADRB3, Formoterol and BRL 37344, decreased COL1 and FN expression of hBSMCs under 100 cm H2O for 6 h compared with the cells exposed to hydrostatic pressure only. As the classic downstream pathways of ADRB, the EPAC pathway inhibited COL1 and FN expression of hBSMCs via regulating SMAD3 and SMAD2 activities, respectively. In pBOO rats, Procaterol (ADRB2 agonist), and Mirabegron (ADRB3 agonist) inhibited the formation of collagen and decreased the expression of FN and COL1 in the bladders of pBOO rats. CONCLUSIONS The bladder fibrosis of pBOO and deposition of hBSMCs ECM under hydrostatic pressure were regulated by ADRB2, and ADRB3 via EPAC/SMAD2/FN and EPAC/SMAD3/COL1 pathways, these findings pave an avenue for effective treatment of pBOO.
Collapse
Affiliation(s)
- Junyu Lai
- Department of Urology, The Affiliated TCM Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Guo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Hongwei Su
- Department of Urology, The Affiliated TCM Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Qing He
- Department of Urology, The Third People's Hospital of Chengdu, Southwest Jiaotong University, 610043 Chengdu, Sichuan, China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Banghua Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang Z, Spitz R, Vezina C, Hou J, Bjorling DE. Lack of expression of miR-29a/b1 impairs bladder function in male mice. Dis Model Mech 2023; 16:dmm050054. [PMID: 37283037 PMCID: PMC10259841 DOI: 10.1242/dmm.050054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Lower urinary tract symptoms (LUTS) refer to various urological diseases, and incomplete bladder emptying is common among affected patients. The etiology of LUTS is largely unknown, and investigations of LUTS suggest that bladder fibrosis contributes to pathogenesis of LUTS. MicroRNAs (miRNAs) are short (∼22 nucleotides), non-coding RNAs that repress target gene expression by a combination of mRNA degradation and translation inhibition. The miR-29 family is best known for its anti-fibrotic role in various organs. miR-29 was decreased in bladders of patients with outlet obstruction and a rat model of bladder outlet obstruction, suggesting that miR-29 may contribute to impaired bladder function subsequent to tissue fibrosis. We characterized bladder function in male mice lacking expression of Mir29a and Mir29b-1 (miR-29a/b1). Lack of miR-29a/b1 resulted in severe urinary retention, increased voiding duration and reduced flow rate, and these mice failed to void or voided irregularly during anesthetized cytometry. Collagens and elastin were increased in bladders of mice lacking miR-29a/b1. These findings reveal an important role for miR-29 in bladder homeostasis and suggest the therapeutic potential of miR-29 to improve symptoms in patients with LUTS.
Collapse
Affiliation(s)
- Zunyi Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Spitz
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chad Vezina
- The O'Brien Center for Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jianghui Hou
- Division of Nephrology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dale E. Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- The O'Brien Center for Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Urology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
von Siebenthal M, Akshay A, Besic M, Schneider MP, Hashemi Gheinani A, Burkhard FC, Monastyrskaya K. Molecular Characterization of Non-Neurogenic and Neurogenic Lower Urinary Tract Dysfunction (LUTD) in SCI-Induced and Partial Bladder Outlet Obstruction Mouse Models. Int J Mol Sci 2023; 24:ijms24032451. [PMID: 36768773 PMCID: PMC9916488 DOI: 10.3390/ijms24032451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
We examined bladder function following spinal cord injury (SCI) by repeated urodynamic investigation (UDI), including external urethral sphincter (EUS) electromyography (EMG) in awake restrained mice and correlated micturition parameters to gene expression and morphological changes in the bladder. A partial bladder outlet obstruction (pBOO) model was used for comparison to elucidate both the common and specific features of obstructive and neurogenic lower urinary tract dysfunction (LUTD). Thirty female C57Bl/6J mice in each group received an implanted bladder catheter with additional electrodes placed next to the EUS in the SCI group. UDI assessments were performed weekly for 7 weeks (pBOO group) or 8 weeks (SCI group), after which bladders were harvested for histological and transcriptome analysis. SCI mice developed detrusor sphincter dyssynergia (DSD) one week after injury with high-pressure oscillations and a significantly increased maximal bladder pressure Pmax and were unable to void spontaneously during the whole observation period. They showed an increased bladder-to-bodyweight ratio, bladder fibrosis, and transcriptome changes indicative of extracellular matrix remodeling and alterations of neuronal signaling and muscle contraction. In contrast, pBOO led to a significantly increased Pmax after one week, which normalized at later time points. Increased bladder-to-bodyweight ratio and pronounced gene expression changes involving immune and inflammatory pathways were observed 7 weeks after pBOO. Comparative transcriptome analysis of SCI and pBOO bladders revealed the activation of Wnt and TGF-beta signaling in both the neurogenic and obstructive LUTD and highlighted FGF2 as a major upregulated transcription factor during organ remodeling. We conclude that SCI-induced DSD in mice leads to profound changes in neuronal signaling and muscle contractility, leading to bladder fibrosis. In a similar time frame, significant bladder remodeling following pBOO allowed for functional compensation, preserving normal micturition parameters.
Collapse
Affiliation(s)
- Michelle von Siebenthal
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Akshay Akshay
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mustafa Besic
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Marc P. Schneider
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Fiona C. Burkhard
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Katia Monastyrskaya
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-316328776
| |
Collapse
|
4
|
Zhu B, Kang Z, Zhu S, Zhang Y, Lai X, Zhou L, Huang H, Gao X, Jiang C, Zeng J. Multi-Omics Characterization of Circular RNA-Encoded Novel Proteins Associated With Bladder Outlet Obstruction. Front Cell Dev Biol 2022; 9:772534. [PMID: 35071227 PMCID: PMC8777291 DOI: 10.3389/fcell.2021.772534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Bladder outlet obstruction (BOO) is a common urologic disease associated with poorly understood molecular mechanisms. This study aimed to investigate the possible involvements of circRNAs (circular RNAs) and circRNA-encoded proteins in BOO development. The rat BOO model was established by the partial bladder outlet obstruction surgery. Differential expression of circRNA and protein profiles were characterized by deep RNA sequencing and iTRAQ quantitative proteomics respectively. Novel proteins encoded by circRNAs were predicted through ORF (open reading frame) selection using the GETORF software and verified by the mass spectrometry in proteomics, combined with the validation of their expressional alterations by quantitative RT-PCR. Totally 3,051 circRNAs were differentially expressed in bladder tissues of rat BOO model with widespread genomic distributions, including 1,414 up-regulated, and 1,637 down-regulated circRNAs. Our following quantitative proteomics revealed significant changes of 85 proteins in rat BOO model, which were enriched in multiple biological processes and signaling pathways such as the PPAR and Wnt pathways. Among them, 21 differentially expressed proteins were predicted to be encoded by circRNAs and showed consistent circRNA and protein levels in rat BOO model. The expression levels of five protein-encoding circRNAs were further validated by quantitative RT-PCR and mass spectrometry. The circRNA and protein profiles were substantially altered in rat BOO model, with great expressional changes of circRNA-encoded novel proteins.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Sihua Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yuying Zhang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xiangmao Lai
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Lilin Zhou
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chonghe Jiang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Jianwen Zeng
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
5
|
miR-98-5p plays a critical role in depression and antidepressant effect of ketamine. Transl Psychiatry 2021; 11:454. [PMID: 34480014 PMCID: PMC8417029 DOI: 10.1038/s41398-021-01588-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Ketamine has been demonstrated to be a rapid-onset and long-lasting antidepressant, but its underlying molecular mechanisms remain unclear. Recent studies have emerged microRNAs as important modulators for depression treatment. In this study, we report that miR-98-5p is downregulated in the prefrontal cortex and hippocampus of mice subjected to chronic social stress, while overexpressing it by its agonist alleviates depression-like behaviors. More importantly, we demonstrate that miR-98-5p is upregulated by ketamine administration, while inhibition of it by its antagonist blocks the antidepressant effect of ketamine. Our data implicate a novel molecular mechanism underlying the antidepressant effect of ketamine, and that therapeutic strategies targeting miR-98-5p could exert beneficial effects for depression treatment.
Collapse
|
6
|
Guo Q, Ni P, Dai Y, Hu J, Yao Y. Long-Chain Noncoding RNA ADAMTS9-AS2 Regulates Proliferation, Migration, and Apoptosis in Bladder Cancer Cells Through Regulating miR-182-5p. J Interferon Cytokine Res 2021; 41:60-71. [PMID: 33621133 DOI: 10.1089/jir.2020.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The long-chain noncoding RNA ADAMTS9-AS2 functions as a tumor suppressor gene in many cancers. However, the underlying mechanism remains to be fully elucidated in bladder cancer (BC). ADAMTS9-AS2 exhibited a lower expression level in BC samples and cell lines. In addition, overexpression of ADAMTS9-AS2 obviously suppressed proliferation and migration, and induced apoptosis of T24 cells, while transfection with the ADAMTS9-AS2 inhibitor had opposite results in 5637 cells. Furthermore, miR-182-5p was the target microRNA of ADAMTS9-AS2 and was negatively correlated with ADAMTS9-AS2 expression. Upregulation of miR-182-5p reversed the effects of ADAMTS9-AS2 overexpression on biological function in T24 cells. ADAMTS9-AS2 was a tumor suppressor that inhibited BC cell proliferation and induced cellular apoptosis by targeting miR-182-5p, and it could be a promising target for BC treatment.
Collapse
Affiliation(s)
- Qing Guo
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Pinghua Ni
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Yi Dai
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Jianming Hu
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| | - Yizhe Yao
- Department of Urinary Surgery, The Fifth People's Hospital of Kunshan, Suzhou City, China
| |
Collapse
|
7
|
Song YJ, Cao JY, Jin Z, Hu WG, Wu RH, Tian LH, Yang B, Wang J, Xiao Y, Huang CB. Inhibition of microRNA-132 attenuates inflammatory response and detrusor fibrosis in rats with interstitial cystitis via the JAK-STAT signaling pathway. J Cell Biochem 2018; 120:9147-9158. [PMID: 30582204 DOI: 10.1002/jcb.28190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Interstitial cystitis (IC) is a heterogeneous syndrome with unknown etiology, and microRNAs (miRs) were found to be involved in IC. In our study, we aim to explore the role of miR-132 in the inflammatory response and detrusor fibrosis in IC through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway in rat models. A rat model of IC was established and treated with the miR-132 mimic, miR-132 inhibitor, and/or JAK-STAT signaling pathway inhibitor AG490. Enzyme-linked immunosorbent assay was applied to measure the expression of interleukin (IL)-6, IL-10, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1). The urodynamic test was performed to assess urodynamic parameters, and reverse transcription quantitative polymerase chain reaction and Western blot analysis for the expression of miR-132, STAT4, suppressors of cytokine signaling 3 (SOCS3), JAK2, vascular endothelial growth factor (VEGF), IFN-γ, and TNF-α. IC rats treated with miR-132 inhibitor and AG490 had decreased collagen fiber, inflammatory cell infiltration, and mast cells, lower expression of IL-6, IL-10, IFN-γ, TNF-α, ICAM-1, collagens I and III, and alleviated urodynamic parameters and decreased expression of STAT4, VEGF, JAK2, IFN-γ, TNF-α, and increased expression of SOCS3. Taken together, our data indicate that downregulation of miR-132 alleviates inflammatory response and detrusor fibrosis in IC via the inhibition of the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Ya-Jun Song
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jun-Ying Cao
- Department of Ultrasound, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, P. R. China
| | - Zhuang Jin
- Department of Ultrasound, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, P. R. China
| | - Wen-Gang Hu
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Rong-Hua Wu
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Lu-Hai Tian
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ya Xiao
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Chi-Bing Huang
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
8
|
Zhu B, Ekman M, Svensson D, Lindvall JM, Nilsson BO, Uvelius B, Swärd K. Array profiling reveals contribution of Cthrc1 to growth of the denervated rat urinary bladder. Am J Physiol Renal Physiol 2018; 314:F893-F905. [PMID: 29357417 DOI: 10.1152/ajprenal.00499.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bladder denervation and bladder outlet obstruction are urological conditions that cause bladder growth. Transcriptomic surveys in outlet obstruction have identified differentially expressed genes, but similar studies following denervation have not been done. This was addressed using a rat model in which the pelvic ganglia were cryo-ablated followed by bladder microarray analyses. At 10 days following denervation, bladder weight had increased 5.6-fold, and 2,890 mRNAs and 135 micro-RNAs (miRNAs) were differentially expressed. Comparison with array data from obstructed bladders demonstrated overlap between the conditions, and 10% of mRNAs changed significantly and in the same direction. Many mRNAs, including collagen triple helix repeat containing 1 ( Cthrc1), Prc1, Plod2, and Dkk3, and miRNAs, such as miR-212 and miR-29, resided in the shared signature. Discordantly regulated transcripts in the two models were rare, making up for <0.07% of all changes, and the gene products in this category localized to the urothelium of normal bladders. These transcripts may potentially be used to diagnose sensory denervation. Western blotting demonstrated directionally consistent changes at the protein level, with increases of, e.g., Cthrc1, Prc1, Plod2, and Dkk3. We chose Cthrc1 for further studies and found that Cthrc1 was induced in the smooth muscle cell (SMC) layer following denervation. TGF-β1 stimulation and miR-30d-5p inhibition increased Cthrc1 in bladder SMCs, and knockdown and overexpression of Cthrc1 reduced and increased SMC proliferation. This work defines common and distinguishing features of bladder denervation and obstruction and suggests a role for Cthrc1 in bladder growth following denervation.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University , Lund , Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University , Guangdong , China
| | - Mari Ekman
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Daniel Svensson
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Jessica M Lindvall
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University , Stockholm , Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Bengt Uvelius
- Section of Urology, Department of Clinical Science, Lund University , Lund , Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| |
Collapse
|
9
|
MicroRNA-132 upregulation promotes matrix degradation in intervertebral disc degeneration. Exp Cell Res 2017; 359:39-49. [DOI: 10.1016/j.yexcr.2017.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/05/2017] [Indexed: 11/24/2022]
|
10
|
Urinary Biomarkers for Bladder Outlet Obstruction. CURRENT BLADDER DYSFUNCTION REPORTS 2017. [DOI: 10.1007/s11884-017-0418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Brøsen K. Letter from the Editor. Basic Clin Pharmacol Toxicol 2017; 120:3-4. [DOI: 10.1111/bcpt.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
MiR 3180-5p promotes proliferation in human bladder smooth muscle cell by targeting PODN under hydrodynamic pressure. Sci Rep 2016; 6:33042. [PMID: 27608612 PMCID: PMC5017130 DOI: 10.1038/srep33042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/18/2016] [Indexed: 02/05/2023] Open
Abstract
Human bladder smooth muscle cells (HBSMCs) were subjected to pressure cycles of up to 200 cm H2O to a pressure of 0 cm H2O for 24 hours. The total RNA extracted from each group was subjected to microarray analysis. miR-3180-5p emerged as the most overexpressed of all the differentially expressed microRNAs, and this finding was validated by PCR. We then used CCK-8 to quantify cell proliferation after liposome-mediated transfection. Subsequently, we investigated the change in PODN and its downstream signaling proteins, including cyclin-dependent kinase 2 (cdk2) and p21. In addition, flow cytometry was performed to quantify cell-cycle distribution. The results show that miR-3180-5p, the microRNA that was most overexpressed in response to HP, reduced the expression of PODN and podocan (p = 0.004 and p = 0.041, respectively). Silencing of PODN via miR-3180-5p overexpression revealed a significant promotion of cell proliferation increased in the CCK-8 experiment, p = 0.00077). This cell proliferation was accompanied by an increase in cdk2 expression (p = 0.00193) and a decrease in p21 expression (p = 0.0095). The percentage of cells in (S + G2/M) improved after transfection (p = 0.002). It was apparent that HP upregulates miR-3180-5p, which inhibits the expression of PODN and promotes HBSMC proliferation via the cdk2 signaling pathway.
Collapse
|