1
|
Moshtaghi Zonouz A, Abkar Aras M, Jafari N, Rezaei Z, Hamishehkar H. Green synthesis of new adamantane-containing dihydropyrimidine derivatives as potential anticancer agents. RSC Adv 2025; 15:7949-7955. [PMID: 40084301 PMCID: PMC11904882 DOI: 10.1039/d5ra00284b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Despite significant progress in cancer treatment, cancer remains a major focus of research due to medication resistance and side effects. In this study, bioactive adamantane-containing dihydropyrimidine (DHPM) derivatives were synthesized through the multi-component Biginelli reaction of N-(adamant-1-yl)acetoacetamide, benzaldehyde derivatives, and thiourea in the presence of trifluoroacetic acid (TFA, 2 mol%) as catalyst under solvent free conditions. This method provides an effective and significantly improved modification of the original Biginelli reaction in terms of yield and reaction time. The synthesized DHPM derivatives were subjected to cytotoxicity screening against the A-549 human non-small cell lung cancer (NSCLC) cell line to evaluate their effects on cell growth inhibition. MTT cytotoxicity assay was used to determine IC50 values. Among the target analogs, IIb, IIj, IId, and IIg demonstrated the best activity with IC50 values of 1.03, 8.36, 10.38, and 16.04 μg mL-1, respectively. Additionally, we assessed the possible mechanisms for cell growth inhibition and induction of apoptotic cell death using the DAPI and Annexin V-FITC staining. The average percentages of apoptotic cells were 21.35%, 28.35%, 32.73, and 43.33% for IIg, IId, IIj, and IIb treatment groups, respectively. These results suggest that the synthesized adamantane-containing dihydropyrimidines can be considered as encouraging molecules for further drug development as anticancer agents.
Collapse
Affiliation(s)
- Adeleh Moshtaghi Zonouz
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran
| | - Mina Abkar Aras
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran
| | - Nahideh Jafari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz Tabriz Iran
| | - Zahra Rezaei
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
3
|
Dadashpour M, Mahmoudi H, Rahimi Z, Janghorbanian Poodeh R, Mousazadeh H, Firouzi-Amandi A, Yazdani Y, Nezami Asl A, Akbarzadeh A. Sustained in vitro delivery of metformin-loaded mesoporous silica nanoparticles for delayed senescence and stemness preservation of adipose-derived stem cells. J Drug Deliv Sci Technol 2023; 87:104769. [DOI: 10.1016/j.jddst.2023.104769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Shabestani N, Mousazadeh H, Shayegh F, Gholami S, Mota A, Zarghami N. Osteogenic differentiation of adipose-derived stem cells on dihydroartemisinin electrospun nanofibers. J Biol Eng 2022; 16:15. [PMID: 35739567 PMCID: PMC9229097 DOI: 10.1186/s13036-022-00294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In this study, Dihydroartemisinin (DHART)-loaded polycaprolactone collagen nanofibers (PCL/Col NFs) were constructed as effective biocompatible scaffolds through adjusting the proportions of hydrophobic/ hydrophilic polymers for enhanced osteoblastic differentiation of human adipose-derived stem cells (hADSCs). Results The designed NFs were characterized through FTIR, XRD, TGA, FE-SEM, and tensile testing. DHART-loaded PCL/Col electrospun NFs provide an ideal solution, with the potential of sustained drug release as well as inhibition of drug re-crystallization. Interestingly, inhibiting DHART re-crystallization can improve its bioavailability and provide a more effective therapeutic efficacy. Besides, the data set found through FE-SEM, MTT, PicoGreen, qPCR, and alkaline phosphatase (ALP) assays revealed the improved adhesion and proliferation rate of hADSCs cultured on PCL/Col/DHART (5%) NFs after 14 and 21 days of incubation. Conclusions These findings confirmed the potential of the designed NF scaffolds for sustained/controlled release of DHART therapeutic molecules toward bone tissue regeneration and engineering. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Nazila Shabestani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mousazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahimeh Shayegh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Gholami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
5
|
Dhingra N, Singh JB, Singh HL. Synthesis, spectroscopy, and density functional theory of organotin and organosilicon complexes of bioactive ligands containing nitrogen, sulfur donor atoms as antimicrobial agents: in vitro and in silico studies. Dalton Trans 2022; 51:8821-8831. [PMID: 35620880 DOI: 10.1039/d2dt01051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently inorganic-based metallodrugs provide an effective mechanism for the drugs on the choice of metal and its properties. Medicinal complex compounds provide an efficient platform for various pharmacological and therapeutic applications. Six new organotin and organosilicon complexes containing sulphur and nitrogen donor atoms were synthesised. These complexes of (E)-2-((4-methoxybenzylidene)amino)benzenethiol were characterized by elemental analyses, molecular weights, conductance measurements, infrared, electronic, and NMR spectroscopy. The data analysis indicated that the Schiff base contains bidentate nitrogen sulfur (NS) domains and was coordinated to silicon (Si) and tin (Sn) moieties via the imine-N and thiolic-S atoms, resulting in penta- and hexa-coordinated complexes in 1 : 1 and 1 : 2 ratios, respectively. The geometries around the Sn and Si atoms in complexes 1, 3, and 5 were five-coordinated and 2, 4, and 6 were six-coordinated octahedra, respectively. Density functional theory (DFT) was used to determine the optimal structural parameters. The antimicrobial activities of the ligand and its complexes were determined. These data indicate that metal complexes are more effective against bacteria and fungi in comparison to the free ligand. Molecular docking was performed to interpret the interaction of protein and various complexes and it was observed that compound 6 showed the highest binding affinity.
Collapse
Affiliation(s)
- Naveen Dhingra
- Department of Agriculture and Internal Quality Assurance Cell, Medi-Caps University, Pigdamber Road, Rau, Indore-453331, M.P., India
| | - J B Singh
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh-332311, Sikar, Raj., India. .,Department of Chemistry, Govt PG College Osian, Jodhapur-342303, India
| | - Har Lal Singh
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh-332311, Sikar, Raj., India.
| |
Collapse
|
6
|
Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy. Carbohydr Polym 2022; 276:118747. [PMID: 34823779 DOI: 10.1016/j.carbpol.2021.118747] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Combination therapy through simultaneous delivery of anti-cancer drugs and genes with nano-assembled structure has been proved to be a simple and effective approach for treating breast cancer. In this study, redox-sensitive folate-appended-polyethylenimine-β-cyclodextrin (roFPC) host-guest supramolecular nanoparticles (HGSNPs) were developed as a targeted co-delivery system of doxorubicin (Dox) and Human telomerase reverse transcriptase-small interfering RNA) hTERT siRNA) for potential cancer therapy. The nanotherapeutic system was prepared by loading adamantane-conjugated doxorubicin (Ad-Dox) into roFPC through the supramolecular assembly, followed by electrostatically-driven self-assembly between hTERT siRNA and roFPC/Ad-Dox. The roFPC' host-guest structures allow pH-dependent intracellular drug release in a sustained manner, as well as simultaneous and effective gene transfection. This co-delivery vector displayed combined anti-tumor properties of the Dox-enhanced gene transfection, good water-solubility, and biocompatibility, possesses considerably enhanced hemocompatibility, and especially targets folate receptor-positive cells only at low N/P levels to prompt effective cell apoptosis for cancer treatment.
Collapse
|
7
|
Abbasalizadeh F, Alizadeh E, Bagher Fazljou SM, Torbati M, Akbarzadeh A. Anticancer Effect of Alginate-Chitosan Hydrogel Loaded with Curcumin and Chrysin on Lung and Breast Cancer Cell Lines. Curr Drug Deliv 2021; 19:600-613. [PMID: 34391378 DOI: 10.2174/1567201818666210813142007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We conducted the present study to investigate the anticancer effects of curcumin and chrysin loaded in the alginate-chitosan hydrogel on breast cancer (T47D) and lung cancer (A549). BACKGROUND Cancer, which is defined as abnormal cell growth, is one of the biggest public health problems in the world. Natural compounds, such as polyphenols, are used as chemo-preventive and chemotherapeutic agents in different types of cancer owing to their antioxidant, antineoplastic, and cytotoxic properties. To improve their bioavailability and releasing behavior, hydrogel systems with high drug loading and stability and hydrophilic nature have been designed. METHODS The curcumin-chrysin-loaded alginate-chitosan hydrogels were prepared through the ionic gelation mechanism utilizing CaCl2. The prepared hydrogels were studied by using the Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The MTT and DAPI staining assays were employed for cytotoxicity and apoptosis studies of curcumin-chrysin-loaded alginate-chitosan hydrogels. The effects of the curcumin-chrysin-loaded alginate-chitosan hydrogels on the cell cycle of cell lines T47D and A549 were also evaluated using the propidium iodide staining. RESULTS The FTIR indicated specific bands at 1607 and 1422 cm-1 (the carbonyl of alginate) at 834 cm-1 (sodium alginate), 1447 cm-1, and 1026 cm-1 (COOH and C-O stretching bands alginate and chitosan). The curcumin-chrysin-loaded alginate-chitosan hydrogels could significantly (p<0.05) reduce the viability and induce apoptosis, Morover, cause G2/M arrest of the cell cycle in both A549 and T47D cell lines. CONCLUSION The alginate-chitosan hydrogels could work best as an enhanced anticancer drug delivery system.
Collapse
Affiliation(s)
- Farhad Abbasalizadeh
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Bagher Fazljou
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Wesołowska O, Michalak K, Błaszczyk M, Molnár J, Środa-Pomianek K. Organosilicon Compounds, SILA-409 and SILA-421, as Doxorubicin Resistance-Reversing Agents in Human Colon Cancer Cells. Molecules 2020; 25:molecules25071654. [PMID: 32260260 PMCID: PMC7181076 DOI: 10.3390/molecules25071654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/05/2023] Open
Abstract
Multidrug resistance (MDR) that occurs in cancer cells constitutes one of the major reasons for chemotherapy failure. The main molecular mechanism of MDR is overexpression of protein transporters from the ATP-binding cassette (ABC) superfamily, such as ABCB1 (multidrug resistance protein 1 (MDR1), P-glycoprotein). At the expense of ATP hydrolysis, ABCB1 pumps a diverse range of substrates (including anticancer drugs) out of the cell, thereby reducing their intracellular concentration. In the present study, the ability of two patented disiloxanes (SILA-409 and SILA-421) to reverse drug resistance in human colon adenocarcinoma cell lines LoVo and LoVo/Dx was investigated. It was demonstrated that both compounds in concentrations of 0.5-1 µM strongly increased the sensitivity of LoVo/Dx cells to doxorubicin. By means of an accumulation test in which rhodamine 123 was used as an ABCB1 substrate analogue, both organosilicon compounds were also shown to inhibit ABCB1 transport activity. The intracellular accumulation of doxorubicin was also increased, and more drug entered the cellular nuclei of resistant cells in the presence of the studied compounds. In conclusion, both SILA-409 and SILA-421 were demonstrated to be effective MDR reversal agents in resistant human colon cancer cells.
Collapse
Affiliation(s)
- Olga Wesołowska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-784-14-15
| | - Krystyna Michalak
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Maria Błaszczyk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Joseph Molnár
- Institute of Medical Microbiology and Immunobiology, University of Szeged, 6720 Szeged, Hungary
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
9
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
10
|
Sharma P, Vallabhapurapu SV, Ho WH, Hemmaragala NM. Novel synthesis of 1,5-disubstituted-1,2,3-triazolines catalysed by Zepto magnetic microspheres under the influence of a rotating magnetic field. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The novel reactor has been designed to perform chemical reactions under the influence of a magnetic field generated by alternating magnetic poles as a function of time. The system was successfully employed to synthesize a series of 1,5-disubstituted-1,2,3-triazolines via the regioselective [3 + 2] cycloaddition reactions between alkyl/aryl azides and nitroolefins catalysed by Zepto (para magnetic ultra-blue carboxy functionalized) microspheres (bead diameter 2.5 μm). All of the reactions went smoothly without any adverse effect on nitro, cyano, thienyl, hydroxy, halogens, and ether functions at 25 ± 2 °C and afforded 82%–99% pure products at a magnetic field of 18.99 mT and an exposure time of 180–240 min. The influence of the magnetic force exerted on the magnetic materials was found to enhance the catalytic activity of microspheres. The catalyst could easily be separated by simple centrifugation, which could be reused for at least 15 runs with no loss in activity.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg-1709, South Africa
- Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg-1709, South Africa
| | - Srinivasu V. Vallabhapurapu
- Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg-1709, South Africa
- Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg-1709, South Africa
| | - Wei H. Ho
- Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg-1709, South Africa
- Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg-1709, South Africa
| | - Nanjundaswamy M. Hemmaragala
- Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg-1709, South Africa
- Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg-1709, South Africa
| |
Collapse
|
11
|
Darfarin G, Salehi R, Alizadeh E, Nasiri Motlagh B, Akbarzadeh A, Farajollahi A. The effect of SiO 2/Au core-shell nanoparticles on breast cancer cell's radiotherapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:836-846. [PMID: 29741418 DOI: 10.1080/21691401.2018.1470526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Recently it has been shown that radiation dose enhancement could be achievable in radiotherapy using nanoparticles (NPs). In this study, evaluation was made to determine efficiency of gold-silica shell-core NP in megavoltage irradiation of MCF7 breath cancer cells. MATERIALS AND METHODS Gold-silicon oxide shell-core NPs were obtained by conjugation of gold NP with amine or thiol functionalized silica NPs (AuN@SiO2 and AuS@SiO2). Cellular uptake and cytotoxicity of NPs were examined by fluorescent microscopy and MTT assay, respectively. MCF-7 breast cancer cells were treated with both NPs and irradiation was made with X-ray energies of 6 and 18 MV to the absorbed dose of 2, 4 and 8 Gy using Simense linear accelerator. The efficiency of radiation therapy was then evaluated by MTT and Brdu assay, DAPI staining and cell cycle analysis. RESULTS TEM images indicated that synthesized NPs had average diameter of 25 nm. Cellular uptake demonstrated that the internalization of AuS@SiO2 and AuN@SiO2 NPs amounted to 18% and 34%, 3 h post treatment, respectively. Nontoxicity of prepared NPs on MCF-7 cells was proved by MTT and Brdu assays as well as DAPI staining and cell cycle studies. The highest enhancement in radiation dose was observed in the cells that irradiated with radiation energy of 18 MV and absorbed of 8 Gy at NPs concentration of 200 ppm. The Brdu findings revealed that the cytotoxicity and apoptosis on MCF-7 cells are dose dependent with a significantly more death in AuN@SiO2 (amine) exposed cells (p < .05). Analysis also revealed interruption in cell cycle by demonstrating lack of cells, in S phase in amine treated cells (AuN@SiO2) at given dose of 8 Gy using 18 MV X-ray in comparison to thiol treated cells. CONCLUSIONS Based on the results of the study it can be concluded that the gold-silicon oxide shell-core NPs could play an effective role in radiotherapy of MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Ghazal Darfarin
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Roya Salehi
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Science , Tabriz , Iran
| | - Effat Alizadeh
- c Department of Medical Biotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Abolfazl Akbarzadeh
- e Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences , Tabriz , Iran.,f Department of Chemical Engineering , Northeastern University , Boston , MA , USA
| | - Alireza Farajollahi
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,g Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,h Department of Radiotherapy , Imam Reza University Hospital, Tabriz University of Medical sciences , Tabriz , Iran
| |
Collapse
|
12
|
Arezoumand KS, Alizadeh E, Esmaeillou M, Ghasemi M, Alipour S, Pilehvar-Soltanahmadi Y, Zarghami N. The emu oil emulsified in egg lecithin and butylated hydroxytoluene enhanced the proliferation, stemness gene expression, and in vitro wound healing of adipose-derived stem cells. In Vitro Cell Dev Biol Anim 2018; 54:205-216. [DOI: 10.1007/s11626-018-0228-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
|