1
|
Chai H, Yao S, Gao Y, Hu Q, Su W. Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review). Int J Mol Med 2025; 56:102. [PMID: 40341397 PMCID: PMC12081031 DOI: 10.3892/ijmm.2025.5543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) and epithelial‑mesenchymal transition (EMT) have important roles in fibrosis and tumour development. Moderate ERS activates cellular defence mechanisms in response to noxious stimuli; however, sustained or overly strong ERS induces apoptosis. In this disease process, EMT induces epithelial cells to acquire the ability to migrate and invade. Reportedly, ERS directly or indirectly regulates EMT processes through multiple mechanisms (such as key transcription factors, signalling pathways, ferroptosis, autophagy and oxidative stress), and both processes form a complex network of interactions. Given the critical roles of ERS and EMT in disease, targeted intervention of these two processes has emerged as a potential therapeutic strategy. In the present study, the molecular interaction mechanism of ERS and EMT was systematically explored, research progress in fibrotic and neoplastic diseases was reviewed and the potential application prospects of related targeted therapies were examined, which may provide new ideas for the development of drugs to reverse fibrosis and treat tumours.
Collapse
Affiliation(s)
- Hongyu Chai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ya Gao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wei Su
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
2
|
Babu S, Velmani NS, Manoharan S, Perumal E. Esculin, a Coumarin Glucoside Prevents Fluoride-Induced Oxidative Stress and Cardiotoxicity in Zebrafish Larvae. ENVIRONMENTAL TOXICOLOGY 2025; 40:636-649. [PMID: 39606932 DOI: 10.1002/tox.24445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Fluoride (F-) is a major groundwater contaminant spread across the world. In excess concentrations, F- can be detrimental to living beings. F- exposure is linked to cellular redox dyshomeostasis, leading to oxidative stress-mediated pathologies including heart dysfunction. Due to its potent antioxidant properties, various phytochemicals are found to alleviate the symptoms of F- toxicity. Hence, we explore the protective effect of esculin (Esc), a coumarin glucoside on F--induced oxidative stress and cardiotoxicity in zebrafish larvae. The experimental groups consisted of NaF (50 ppm) and Esc (100 μM) groups treated alone and in combination with a control group for 6 h. The groups were maintained till 78 hpf after which the level of oxidants (ROS, LPO, and PCC) and antioxidants (GST, GSH, GPx, SOD, and CAT) were assessed. The results revealed that Esc pretreatment restored the depleted antioxidant markers and reduced the levels of oxidant in the Esc+NaF group, exhibiting its antioxidant potential. In addition, analyses of the heartbeat rate and hemoglobin integrity using o-Dianisidine staining were conducted in the control and experimental groups. Esc treatment prevents F- induced cardiac changes including tachycardia and altered blood flow. Further, the mRNA expression level of antioxidant genes (nrf2, gstp1, hmox1a, prdx1, and nqo1) and cardiac developmental genes (bmp2b, nkx2.5, myh6, and myl7) confirmed that Esc acts as a potent free radical scavenger and antioxidant defense enhancer, protecting zebrafish larvae from NaF-induced oxidative stress and heart dysfunction.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Naveen Surya Velmani
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
3
|
Xu M, Zhang M, Wu J, Wang J, Wu H, Xu X. Esculin promotes skin wound healing in mice and regulates the Wnt/β-catenin signaling pathway. Cytojournal 2025; 22:32. [PMID: 40260065 PMCID: PMC12010908 DOI: 10.25259/cytojournal_184_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/25/2025] [Indexed: 04/23/2025] Open
Abstract
Objective Previous studies reported that esculin could protect against renal ischemia-reperfusion injury and liver injury, but its mechanism of action in skin wound healing is unclear. The Wnt/β-catenin signaling pathway plays a positive role in the wound healing process. This study aimed to investigate the effects of esculin on the rate and quality of skin wound healing in mice and explore its regulatory role in the Wnt/b-catenin signaling pathway. Material and Methods Circular full-thickness skin wounds with a diameter of 8 mm were created on the backs of C57BL/6 mice, which were administered with 20 and 40 mg•kg-1 esculin through gastric lavage. Wound healing was monitored, and samples collected on day 14 were analyzed through hematoxylin-eosin and Masson staining to assess granulation tissue formation and collagen deposition. Immunohistochemistry, immunofluorescence, and Western blot evaluated markers of collagen synthesis, proliferation, angiogenesis, and proteins in the Wnt/b-catenin signaling pathway. National institutes of health/3T3 cells treated with esculin (50 and 200 μM) were analyzed for proliferating cell nuclear antigen (PCNA) expression to assess proliferative activity. Results Compared with the model group, the esculin-treated groups exhibited significantly enhanced wound healing (P < 0.05), increased skin epithelial thickness (P < 0.01), and promoted extracellular matrix formation in mice. In addition, esculin significantly raised type I collagen alpha-1 chain and type III collagen alpha-1 chain protein levels (P < 0.05), boosted the expression of the cell proliferation marker PCNA and the vascular marker cluster of differentiation 31 in the dermis (P < 0.05), and upregulated proteins related to the Wnt/b-catenin signaling pathway and increased glycogen synthase kinase 3 beta phosphorylation in skin wound and NIH/3T3 cells (P < 0.05). Conclusion Esculin could upregulate and activate the Wnt/b-catenin signaling pathway to promote wound healing.
Collapse
Affiliation(s)
- Mian Xu
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| | - Mengsi Zhang
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Jingjing Wu
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| | - Jinmeng Wang
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| | - Huaze Wu
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| | - Xianting Xu
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
4
|
Owumi SE, Oluwawibe BJ, Chimezie J, Babalola JJ, Ogunyemi OM, Gyebi GA, Otunla MT, Altayyar A, Arunsi UO, Irozuru CE, Owoeye OO. An in vivo and in silico probing of the protective potential of betaine against sodium fluoride-induced neurotoxicity. BMC Pharmacol Toxicol 2024; 25:87. [PMID: 39548593 PMCID: PMC11568634 DOI: 10.1186/s40360-024-00812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Excessive fluoride exposure beyond the tolerable limit may adversely impacts brain functionality. Betaine (BET), a trimethyl glycine, possesses antioxidant, anti-inflammatory and anti-apoptotic functions, although the underlying mechanisms of the role of BET on fluoride-induced neurotoxicity remain unelucidated. To assess the mechanism involved in the neuro-restorative role of BET on behavioural, neurochemical, and histological changes, we employed a rat model of sodium fluoride (NaF) exposure. Animals were treated with NaF (9 mg/kg) body weight (bw) only or co-treated with BET (50 and 100 mg/kg bw) orally uninterrupted for 28 days. We obtained behavioural phenotypes in an open field, performed negative geotaxis, and a forelimb grip test, followed by oxido-inflammatory, apoptotic, and histological assessment. Behavioural endpoints indicated lessened locomotive and motor and heightened anxiety-like performance and upregulated oxidative, inflammatory, and apoptotic biomarkers in NaF-exposed rats. Co-treatment with BET significantly enhanced locomotive, motor, and anxiolytic performance, increased the antioxidant signalling mechanisms and demurred oxidative, inflammatory, and apoptotic biomarkers and histoarchitectural damage in the cerebrum and cerebellum cortices mediated by NaF. The in-silico analysis suggests that multiple hydrogen bonds and hydrophobic interactions of BET with critical amino acid residues, including arginine (ARG380 and ARG415) in the Keap1 Kelch domain, which may disrupt Keap1-Nrf2 complex and activate Nrf2. This may account for the observed increased in the Nrf2 levels, elevated antioxidant response and enhanced anti-inflammatory response. The BET-Keap1 complex was also observed to exhibit structural stability and conformational flexibility in solvated biomolecular systems, as indicated by the thermodynamic parameters computed from the trajectories obtained from a 100 ns full atomistic molecular dynamics simulation. Therefore, BET mediates neuroprotection against NaF-induced cerebro-cerebellar damage through rats' antioxidant, anti-inflammatory, and anti-apoptotic activity, which molecular interactions with Keap1-Nrf2 may drive.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria.
| | - Bayode J Oluwawibe
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Joseph Chimezie
- Endocrine and Metabolic Research Laboratory, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Jesutosin J Babalola
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Oludare M Ogunyemi
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Gideon A Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, Nasarawa, Nigeria
- Natural Products and Structural (Bio-Chem)-informatics Research Laboratory (NpsBC-Rl), Bingham University, Nasarawa, Nigeria
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200004, Nigeria
| | - Ahmad Altayyar
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Uche O Arunsi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Chioma E Irozuru
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Olatunde O Owoeye
- Neuroanatomy Research Laboratories, Department of Anatomy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Ju S, Tan Y, Wang Q, Zhou L, Wang K, Wen C, Wang M. Antioxidant and anti‑inflammatory effects of esculin and esculetin (Review). Exp Ther Med 2024; 27:248. [PMID: 38682114 PMCID: PMC11046185 DOI: 10.3892/etm.2024.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Fraxinus chinensis Roxb is a deciduous tree, which is distributed worldwide and has important medicinal value. In Asia, the bark of Fraxinus chinensis Roxb is a commonly used traditional Chinese medicine called Qinpi. Esculetin is a coumarin compound derived from the bark of Fraxinus chinensis Roxb and its glycoside form is called esculin. The aim of the present study was to systematically review relevant literature on the antioxidant and anti-inflammatory effects of esculetin and esculin. Esculetin and esculin can promote the expression of various endogenous antioxidant proteins, such as superoxide dismutase, glutathione peroxidase and glutathione reductase. This is associated with the activation of the nuclear factor erythroid-derived factor 2-related factor 2 signaling pathway. The anti-inflammatory effects of esculetin and esculin are associated with the inhibition of the nuclear factor κ-B and mitogen-activated protein kinase inflammatory signaling pathways. In various inflammatory models, esculetin and esculin can reduce the expression levels of various proinflammatory factors such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6, thereby inhibiting the development of inflammation. In summary, esculetin and esculin may be promising candidates for the treatment of numerous diseases associated with inflammation and oxidative stress, such as ulcerative colitis, acute lung and kidney injury, lung cancer, acute kidney injury.
Collapse
Affiliation(s)
- Shaohua Ju
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Youli Tan
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Zhou
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Kun Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Chenghong Wen
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Mingjian Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Manoharan S, Prajapati K, Karthikeyan T, Vedagiri H, Perumal E. Virtual screening of FOXO3a activators from natural product-like compound library. Mol Divers 2024; 28:1393-1408. [PMID: 37261568 DOI: 10.1007/s11030-023-10664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
FOXO3a is an inevitable transcription factor, which is involved in the regulation of biological processes such as proliferation, DNA damage repair, cell cycle arrest and cell death. Previous studies confirmed that FOXO3a is an excellent tumor suppressor and in cancer cells, it gets phosphorylated followed by proteasomal degradation. FOXO3a is found to be inactivated in cancer cells, whereas in normal cells it gets activated and upregulates its downstream targets, which induces apoptotic pathways. Hence, activation of FOXO3a can be implicated in cancer prevention and treatment. A variety of commercially available FOXO3a activators such as doxorubicin and metformin possess undesirable adverse effects to normal cells and tissues, which are their major limitations. Natural bioactive compounds, eliminating the limitations of such compounds, become an excellent choice for the treatment and prevention of cancer. In this study, a library of natural product-like compounds was screened for their FOXO3a activation potential through in silico approach, which included the use of several bioinformatics tools and processes. Other molecular interaction studies as well as binding and specificity studies were carried out with the help of molecular dynamics simulation. Virtual screening of 7700 small molecules from the Natural Products-like Compound Library revealed the top three FOXO3a activators F3385-6269, F2183-0033 and F3351-0330. Further validation studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | - Tharini Karthikeyan
- Molecular Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641 046, India
| | - Hemamalini Vedagiri
- Molecular Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
7
|
Mili A, Birangal S, Nandakumar K, Lobo R. A computational study to identify Sesamol derivatives as NRF2 activator for protection against drug-induced liver injury (DILI). Mol Divers 2024; 28:1709-1731. [PMID: 37392347 PMCID: PMC11269468 DOI: 10.1007/s11030-023-10686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Drug-induced liver injury can be caused by any drugs, their metabolites, or natural products due to the inefficient functioning of drug-metabolizing enzymes, resulting in reactive oxygen species generation and leading to oxidative stress-induced cell death. For protection against oxidative stress, our cell has various defense mechanisms. One of the mechanisms is NRF2 pathway, when activated, protects the cell against oxidative stress. Natural antioxidants such as Sesamol have reported pharmacological activity (hepatoprotective & cardioprotective) and signaling pathways (NRF2 & CREM) altering potential. A Computational analysis was done using molecular docking, IFD, ADMET, MM-GBSA, and Molecular dynamic simulation of the Schrödinger suite. A total of 63,345 Sesamol derivatives were downloaded for the PubChem database. The protein structure of KEAP1-NRF2 (PDB: 4L7D) was downloaded from the RCSB protein database. The molecular docking technique was used to screen compounds that can form an interaction similar to the co-crystalized ligand (1VX). Based on MM-GBSA, docking score, and interactions, ten compounds were selected for ADMET profiling and IFD. After IFD, five compounds (66867225, 46148111, 12444939, 123892179, & 94817569) were selected for molecular dynamics simulation (MDS). Protein-ligand complex stability was assessed during MDS. The selected compounds (66867225, 46148111, 12444939, 123892179, & 94817569) complex with KEAP1 protein shows good stability and bond retentions. In our study, we observed that the selected compounds show good interaction, PCA, Rg, binding free energy, and ADMET profile. We can conclude that the selected compounds can act as NRF2 activators, which should be validated using proper in-vivo/in-vitro models.
Collapse
Affiliation(s)
- Ajay Mili
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Richard Lobo
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
9
|
Acharya M, Singh N, Gupta G, Tambuwala MM, Aljabali AAA, Chellappan DK, Dua K, Goyal R. Vitamin D, Calbindin, and calcium signaling: Unraveling the Alzheimer's connection. Cell Signal 2024; 116:111043. [PMID: 38211841 DOI: 10.1016/j.cellsig.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Calcium is a ubiquitous second messenger that is indispensable in regulating neurotransmission and memory formation. A precise intracellular calcium level is achieved through the concerted action of calcium channels, and calcium exerts its effect by binding to an array of calcium-binding proteins, including calmodulin (CAM), calcium-calmodulin complex-dependent protein kinase-II (CAMK-II), calbindin (CAL), and calcineurin (CAN). Calbindin orchestrates a plethora of signaling events that regulate synaptic transmission and depolarizing signals. Vitamin D, an endogenous fat-soluble metabolite, is synthesized in the skin upon exposure to ultraviolet B radiation. It modulates calcium signaling by increasing the expression of the calcium-sensing receptor (CaSR), stimulating phospholipase C activity, and regulating the expression of calcium channels such as TRPV6. Vitamin D also modulates the activity of calcium-binding proteins, including CAM and calbindin, and increases their expression. Calbindin, a high-affinity calcium-binding protein, is involved in calcium buffering and transport in neurons. It has been shown to inhibit apoptosis and caspase-3 activity stimulated by presenilin 1 and 2 in AD. Whereas CAM, another calcium-binding protein, is implicated in regulating neurotransmitter release and memory formation by phosphorylating CAN, CAMK-II, and other calcium-regulated proteins. CAMK-II and CAN regulate actin-induced spine shape changes, which are further modulated by CAM. Low levels of both calbindin and vitamin D are attributed to the pathology of Alzheimer's disease. Further research on vitamin D via calbindin-CAMK-II signaling may provide newer insights, revealing novel therapeutic targets and strategies for treatment.
Collapse
Affiliation(s)
- Manish Acharya
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, India
| | - Nicky Singh
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, Universities of Nottingham and Lincoln College of Science, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, India.
| |
Collapse
|
10
|
Ma YB, Zhou XQ, Jiang WD, Wu P, Liu Y, Li SW, Tang L, Zhang L, Mi HF, Feng L. Tea polyphenols protect against Flavobacterium columnare-induced gill injury via suppression of oxidative stress, inflammation, and apoptosis in grass carp. Int J Biol Macromol 2024; 254:127050. [PMID: 37742887 DOI: 10.1016/j.ijbiomac.2023.127050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Flavobacterium columnare (F. columnare) is one of the deadliest fish pathogens causing bacterial gill rot disease in various freshwater fish species globally. Tea polyphenols (TPs) are an inexpensive product extracted from tea that have received much attention as a feed additive in aquaculture. The current study was designed to investigate the underlying mechanisms and protective effects of dietary TPs against F. columnare-induced gill injury via suppression of oxidative stress, apoptosis, and inflammation in grass carp. TPs were not supplemented to the diet (control) and were supplemented at 40, 80, 120, 160 or 200 mg/kg diet. The feeding experiment was carried out for 60 days, followed by a 3-Day F. columnare challenge test. The results showed that 120 mg/kg TPs in the diet exerted the following five protective effects in fish gill: (1) control gill-rot disease and improved histopathology, (2) inhibit excessive apoptosis, (3) enhance the activity of antioxidant enzymes and upregulate related gene expression via the Nrf2/Keap1 pathway, (4) increase the activity of immune enzymes, And (5) mediate inflammatory cytokine gene expression via the JAK/STAT3 pathway. Taken together, dietary supplementation with TPs is a compelling approach to protect the gill function of fish against F. columnare.
Collapse
Affiliation(s)
- Yao-Bin Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
11
|
Mili A, Das S, Nandakumar K, Lobo R. Molecular docking and dynamics guided approach to identify potential anti-inflammatory molecules as NRF2 activator to protect against drug-induced liver injury (DILI): a computational study. J Biomol Struct Dyn 2023; 41:9193-9210. [PMID: 36326112 DOI: 10.1080/07391102.2022.2141885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Inflammation and oxidative stress can contribute to the etiology of metabolic and chronic illnesses. The ability to prevent oxidative stress induced diseases such as cancer, cardiovascular disease, Alzheimer's disease, and others has been the subject of global research. Drug-induced liver injury (DILI) pathogenesis can be either due to oxidative stress or inflammatory response elicited by the drug, its metabolite, or herbal supplements. Our present research uses computational studies to identify a molecule with anti-inflammatory properties that can operate as an NRF2 activator. Acquiring and preparing the KEAP1-NRF2 Protein (PDB: 4L7D) with Schrodinger Suite was followed by developing a ligand library (Anti-inflammatory library downloaded from ChemDiv database). Molecular docking studies were performed in HTVS, SP, and XP modes, respectively. Based on the docking score, interaction, ADMET and binding free energy, the top ten compounds were selected and subjected to induced-fit docking (IFD) analysis for further study. The top three molecules were chosen for a molecular dynamics (MD) simulation study. Using the Desmond module of the Schrodinger Suite, the stability of the protein-ligand complex and protein-ligand contact throughout 100ns were evaluated during the MD simulation study. In our study, it was observed that three compounds exhibit exceptional stability and retain the essential interaction throughout the studies, and it is anticipated that these compounds may act as effective NRF2 activators. Further in vitro and in vivo assessments can be conducted to determine its potential to prevent DILI via acting as an NRF2 activator for future drug development.
Collapse
Affiliation(s)
- Ajay Mili
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Richard Lobo
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
12
|
Di Stasi LC. Natural Coumarin Derivatives Activating Nrf2 Signaling Pathway as Lead Compounds for the Design and Synthesis of Intestinal Anti-Inflammatory Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040511. [PMID: 37111267 PMCID: PMC10142712 DOI: 10.3390/ph16040511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor related to stress response and cellular homeostasis that plays a key role in maintaining the redox system. The imbalance of the redox system is a triggering factor for the initiation and progression of non-communicable diseases (NCDs), including Inflammatory Bowel Disease (IBD). Nrf2 and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) are the main regulators of oxidative stress and their activation has been recognized as a promising strategy for the treatment or prevention of several acute and chronic diseases. Moreover, activation of Nrf2/keap signaling pathway promotes inhibition of NF-κB, a transcriptional factor related to pro-inflammatory cytokines expression, synchronically promoting an anti-inflammatory response. Several natural coumarins have been reported as potent antioxidant and intestinal anti-inflammatory compounds, acting by different mechanisms, mainly as a modulator of Nrf2/keap signaling pathway. Based on in vivo and in vitro studies, this review focuses on the natural coumarins obtained from both plant products and fermentative processes of food plants by gut microbiota, which activate Nrf2/keap signaling pathway and produce intestinal anti-inflammatory activity. Although gut metabolites urolithin A and urolithin B as well as other plant-derived coumarins display intestinal anti-inflammatory activity modulating Nrf2 signaling pathway, in vitro and in vivo studies are necessary for better pharmacological characterization and evaluation of their potential as lead compounds. Esculetin, 4-methylesculetin, daphnetin, osthole, and imperatorin are the most promising coumarin derivatives as lead compounds for the design and synthesis of Nrf2 activators with intestinal anti-inflammatory activity. However, further structure-activity relationships studies with coumarin derivatives in experimental models of intestinal inflammation and subsequent clinical trials in health and disease volunteers are essential to determine the efficacy and safety in IBD patients.
Collapse
Affiliation(s)
- Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
13
|
Van Hall-Beauvais A, Poganik JR, Huang KT, Parvez S, Zhao Y, Lin HY, Liu X, Long MJC, Aye Y. Z-REX uncovers a bifurcation in function of Keap1 paralogs. eLife 2022; 11:e83373. [PMID: 36300632 PMCID: PMC9754640 DOI: 10.7554/elife.83373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Studying electrophile signaling is marred by difficulties in parsing changes in pathway flux attributable to on-target, vis-à-vis off-target, modifications. By combining bolus dosing, knockdown, and Z-REX-a tool investigating on-target/on-pathway electrophile signaling, we document that electrophile labeling of one zebrafish-Keap1-paralog (zKeap1b) stimulates Nrf2- driven antioxidant response (AR) signaling (like the human-ortholog). Conversely, zKeap1a is a dominant-negative regulator of electrophile-promoted Nrf2-signaling, and itself is nonpermissive for electrophile-induced Nrf2-upregulation. This behavior is recapitulated in human cells: (1) zKeap1b-expressing cells are permissive for augmented AR-signaling through reduced zKeap1b-Nrf2 binding following whole-cell electrophile treatment; (2) zKeap1a-expressing cells are non-permissive for AR-upregulation, as zKeap1a-Nrf2 binding capacity remains unaltered upon whole-cell electrophile exposure; (3) 1:1 ZKeap1a:zKeap1b-co-expressing cells show no Nrf2-release from the Keap1-complex following whole-cell electrophile administration, rendering these cells unable to upregulate AR. We identified a zKeap1a-specific point-mutation (C273I) responsible for zKeap1a's behavior during electrophilic stress. Human-Keap1(C273I), of known diminished Nrf2-regulatory capacity, dominantly muted electrophile-induced Nrf2-signaling. These studies highlight divergent and interdependent electrophile signaling behaviors, despite conserved electrophile sensing.
Collapse
Affiliation(s)
| | - Jesse R Poganik
- Swiss Federal Institute of Technology LausanneLausanneSwitzerland
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology LausanneLausanneSwitzerland
| | - Saba Parvez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of UtahSalt Lake CityUnited States
| | - Yi Zhao
- Swiss Federal Institute of Technology LausanneLausanneSwitzerland
- BayRay Innovation Center, Shenzhen Bay LaboratoryShenzhenChina
| | - Hong-Yu Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamenChina
| | - Xuyu Liu
- Swiss Federal Institute of Technology LausanneLausanneSwitzerland
- School of Chemistry, The University of SydneySydneyAustralia
- The Heart Research Institute, NewtownNewtownAustralia
| | - Marcus John Curtis Long
- Department of Biochemistry, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology LausanneLausanneSwitzerland
| |
Collapse
|
14
|
Babu S, Manoharan S, Ottappilakkil H, Perumal E. Role of oxidative stress-mediated cell death and signaling pathways in experimental fluorosis. Chem Biol Interact 2022; 365:110106. [PMID: 35985521 DOI: 10.1016/j.cbi.2022.110106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Free radicals and other oxidants have enticed the interest of researchers in the fields of biology and medicine, owing to their role in several pathophysiological conditions, including fluorosis (Fluoride toxicity). Radical species affect cellular biomolecules such as nucleic acids, proteins, and lipids, resulting in oxidative stress. Reactive oxygen species-mediated oxidative stress is a common denominator in fluoride toxicity. Fluorosis is a global health concern caused by excessive fluoride consumption over time. Fluoride alters the cellular redox homeostasis, and its toxicity leads to the activation of cell death mechanisms like apoptosis, autophagy, and necroptosis. Even though a surfeit of signaling pathways is involved in fluorosis, their toxicity mechanisms are not fully understood. Thus, this review aims to understand the role of reactive species in fluoride toxicity with an outlook on the effects of fluoride in vitro and in vivo models. Also, we emphasized the signal transduction pathways and the mechanism of cell death implicated in fluoride-induced oxidative stress.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
15
|
Li C, Li J, Lai J, Liu Y. The pharmacological and pharmacokinetic properties of esculin: A comprehensive review. Phytother Res 2022; 36:2434-2448. [PMID: 35599456 DOI: 10.1002/ptr.7470] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chun‐xiao Li
- Department of Dermatology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing‐chun Li
- Department of Dermatology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jiang Lai
- Department of Anorectal Surgery Third People's Hospital of Chengdu Chengdu China
| | - Ying Liu
- Department of Dermatology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
16
|
Onunkun AT, Iwaloye O, Elekofehinti OO. Identification of Novel Nrf2 Activator via Protein-ligand Interactions as
Remedy for Oxidative Stress in Diabetes Mellitus. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210413131108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative stress is a significant player in the pathogenesis of diabetes mellitus
and the Kelch-like ECH-associated protein1/nuclear factor erythroid 2-related factor 2/antioxidant response
element (Keap1/Nrf2/ARE) signaling pathway serves as the essential defense system to mitigate
oxidative stress. Nrf2 is responsible for the mitigation of oxidative stress while Keap1 represses Nrf2’s
activation upon binding. Identification of Nrf2 activators has started to pick up enthusiasm as they can be
used as therapeutic agents against diabetes mellitus. One of the ongoing mechanisms in the activation of
Nrf2 is to disrupt Keap1/Nrf2 protein-protein interaction. This study aimed at using computational analysis
to screen natural compounds capable of inhibiting Keap1/Nrf2 protein-protein interaction.
Methods:
A manual curated library of natural compounds was screened against crystal structure of Keap1
using glide docking algorithm. Binding free energy of the docked complexes, and adsorption, digestion,
metabolism and excretion (ADME) properties were further employed to identify the hit compounds. The
bioactivity of the identified hit against Keap1 was predicted using quantitative structure-activity relationship
(QSAR) model.
Results:
A total of 7 natural compounds (Compound 222, 230, 310, 208, 210, 229 and 205) identified
from different medicinal plants were found to be potent against Keap1 based on their binding affinity and
binding free energy. The internal validated model kpls_radial_30 with R2 of 0.9109, Q2 of 0.7287 was
used to predict the compounds’ bioactivities. Compound 205 was considered as the ideal drug candidate
because it showed moderation for ADME properties, had predicted pIC50 of 6.614 and obeyed Lipinski’s
rule of five.
Conclusion:
This study revealed that Compound 205, a compound isolated from Amphipterygium adstringens
is worth considering for further experimental analysis.
Collapse
Affiliation(s)
- Afolashade Toritseju Onunkun
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure,
Ondo State, Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure,
Ondo State, Nigeria
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure,
Ondo State, Nigeria
| |
Collapse
|
17
|
Song YS, Dai MZ, Zhu CX, Huang YF, Liu J, Zhang CD, Xie F, Peng Y, Zhang Y, Li CQ, Zhang LJ. Validation, Optimization, and Application of the Zebrafish Developmental Toxicity Assay for Pharmaceuticals Under the ICH S5(R3) Guideline. Front Cell Dev Biol 2021; 9:721130. [PMID: 34595173 PMCID: PMC8476914 DOI: 10.3389/fcell.2021.721130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The zebrafish as an alternative animal model for developmental toxicity testing has been extensively investigated, but its assay protocol was not harmonized yet. This study has validated and optimized the zebrafish developmental toxicity assay previously reported by multiple inter-laboratory studies in the United States and Europe. In this study, using this classical protocol, of 31 ICH-positive compounds, 23 compounds (74.2%) were teratogenic in zebrafish, five had false-negative results, and three were neither teratogenic nor non-teratogenic according to the protocol standard; of 14 ICH-negative compounds, 12 compounds (85.7%) were non-teratogenic in zebrafish and two had false-positive results. After we added an additional TI value in the zebrafish treated with testing compounds at 2 dpf along with the original 5 dpf, proposed a new category as the uncategorized compounds for those TI values smaller than the cutoff both at 2 dpf and 5 dpf but inducing toxic phenotypes, refined the testing concentration ranges, and optimized the TI cut-off value from ≥ 10 to ≥ 3 for compounds with refined testing concentrations, this optimized zebrafish developmental assay reached 90.3% sensitivity (28/31 positive compounds were teratogenic in zebrafish) and 88.9% (40/45) overall predictability. Our results from this study strongly support the use of zebrafish as an alternative in vivo method for screening and assessing the teratogenicity of candidate drugs for regulatory acceptance.
Collapse
Affiliation(s)
- Yi-Sheng Song
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | | | - Chen-Xia Zhu
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | | | - Jing Liu
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Cheng-Da Zhang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Feng Xie
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Yi Peng
- Hunter Biotechnology, Inc., Hangzhou, China
| | - Yong Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Hunter Biotechnology, Inc., Hangzhou, China
| | - Chun-Qi Li
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Hunter Biotechnology, Inc., Hangzhou, China
| | - Li-Jiang Zhang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
18
|
Cai ZY, Fu MD, Liu K, Duan XC. Therapeutic effect of Keap1-Nrf2-ARE pathway-related drugs on age-related eye diseases through anti-oxidative stress. Int J Ophthalmol 2021; 14:1260-1273. [PMID: 34414093 DOI: 10.18240/ijo.2021.08.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related eye diseases, including cataract, glaucoma, diabetic retinopathy (DR), and age-related macular degeneration (AMD), are the leading causes of vision loss in the world. Several studies have shown that the occurrence and development of these diseases have an important relationship with oxidative stress in the eye. The Keap1-Nrf2-ARE pathway is a classical pathway that resists oxidative stress and inflammation in the body. This pathway is also active in the development of age-related eye diseases. A variety of drugs have been shown to treat age-related eye diseases through the Keap1-Nrf2-ARE (Kelch-like ECH-Associating protein 1- nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway. This review describes the role of oxidative stress in the development of age-related eye diseases, the function and regulation of the Keap1-Nrf2-ARE pathway, and the therapeutic effects of drugs associated with this pathway on age-related eye diseases.
Collapse
Affiliation(s)
- Zi-Yan Cai
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Meng-Die Fu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Ke Liu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Xuan-Chu Duan
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha 410011, Hunan Province, China
| |
Collapse
|
19
|
Sadovnikova IS, Gureev AP, Ignatyeva DA, Gryaznova MV, Chernyshova EV, Krutskikh EP, Novikova AG, Popov VN. Nrf2/ARE Activators Improve Memory in Aged Mice via Maintaining of Mitochondrial Quality Control of Brain and the Modulation of Gut Microbiome. Pharmaceuticals (Basel) 2021; 14:607. [PMID: 34201885 PMCID: PMC8308546 DOI: 10.3390/ph14070607] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Aging is one of the most serious factors for central nervous dysfunctions, which lead to cognitive impairment. New highly effective drugs are required to slow the development of cognitive dysfunction. This research studied the effect of dimethyl fumarate (DMF), methylene blue (MB), and resveratrol (RSV) on the cognitive functions of 15-month-old mice and their relationship to the maintenance of mitochondrial quality control in the brain and the bacterial composition of the gut microbiome. We have shown that studied compounds enhance mitochondrial biogenesis, mitophagy, and antioxidant defense in the hippocampus of 15-month-old mice via Nrf2/ARE pathway activation, which reduces the degree of oxidative damage to mtDNA. It is manifested in the improvement of short-term and long-term memory. We have also shown that memory improvement correlates with levels of Roseburia, Oscillibacter, ChristensenellaceaeR-7, Negativibacillus, and Faecalibaculum genera of bacteria. At the same time, long-term treatment by MB induced a decrease in gut microbiome diversity, but the other markers of dysbiosis were not observed. Thus, Nrf2/ARE activators have an impact on mitochondrial quality control and are associated with a positive change in the composition of the gut microbiome, which together lead to an improvement in memory in aged mice.
Collapse
Affiliation(s)
- Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Daria A. Ignatyeva
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Maria V. Gryaznova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Ekaterina V. Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Ekaterina P. Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Anastasia G. Novikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| |
Collapse
|
20
|
Zhang W, Feng C, Jiang H. Novel target for treating Alzheimer's Diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev 2021; 65:101207. [PMID: 33144123 DOI: 10.1016/j.arr.2020.101207] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/02/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
In mammals, the Keap1-Nrf2-ARE pathway (henceforth, "the Nrf2 pathway") and autophagy are major intracellular defence systems that combat oxidative damage and maintain homeostasis. p62/SQSTM1, a ubiquitin-binding autophagy receptor protein, links the Nrf2 pathway and autophagy. Phosphorylation of p62 dramatically enhances its affinity for Keap1, which induces Keap1 to release Nrf2, and the p62-Keap1 heterodimer recruits LC3 and mediates the permanent degradation of Keap1 in the selective autophagy pathway. Eventually, Nrf2 accumulates in the cytoplasm and then translocates into the nucleus to activate the transcription of downstream genes that encode antioxidant enzymes, which protect cells from oxidative damage. Since Nrf2 also upregulates the expression of the p62 gene, a p62-Keap1-Nrf2 positive feedback loop is created that further enhances the protective effect on cells. Studies have shown that the p62-activated noncanonical Nrf2 pathway is an important marker of neurodegenerative diseases. The p62-Keap1-Nrf2 positive feedback loop and the Nrf2 pathway are involved in eliminating the ROS and protein aggregates induced by AD. Therefore, maintaining the homeostasis of the p62-Keap1-Nrf2 positive feedback loop, which is a bridge between the Nrf2 pathway and autophagy, may be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
21
|
A new horizon for the steroidal alkaloid cyclovirobuxine D (huangyangning) and analogues: Anticancer activities and mechanism of action. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Dhandare BC, Rather MA, Bhosale BP, Pawar R, Guttula PK, Pagarkar AU. Molecular modeling, docking and dynamic simulations of growth hormone receptor (GHR) of Labeo rohita. J Biomol Struct Dyn 2020; 40:3024-3037. [PMID: 33179589 DOI: 10.1080/07391102.2020.1844063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Growth hormones (GH) have diverse functions like growth promotion, metabolism, appetite, reproduction and social behavior in vertebrates, which is mediated through the growth hormone receptor (GHR). This work was aimed to analyze structural features, homology modeling and molecular docking of Labeo rohita GHR protein. A physicochemical characteristic, like molecular weight was 67.2 kDa and hydropathicity was 0.336. Protein modeling and structure confirmation of L. rohita GHR protein showed 92.7% residues are in the favored region. Selection of ligands and molecular docking shown Melengestrol and Riboflavin ligand showed uppermost binding energy values -7.8 and -7.3 kcal/mol. Molecular interactions describe conventional hydrogen bonding of Melengestrol was observed with VAL94, GLU97, GLU95, TRP57, PHE33, THR34, PRO35, ASP36, PRO37, ARG49, GLY292, LYS291, ILE290, ALA287, LYS289 residues. Riboflavin hydrogen bonds interaction was at PRO37, ASP36, PRO35, THR34, ARG49, SER144, VAL443, GLN442, PRO284, ASP294, ILE285, PRO286, SER408, ALA287, GLY292, LYS291, ILE290, PRO288, LYS287. Molecular dynamics simulation outcomes revealed that complex 2 (Riboflavin and GHR protein) is better than complex1 (Melengestrol and GHR protein). Overall, the results of the present work lead identification of novel molecules that may be agonistic of growth hormone receptor protein and can be used to surge growth in fish. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhushan C Dhandare
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Ratnagiri, Maharashtra, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil-Gandarbal, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKAUST-K), India
| | - B P Bhosale
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Ratnagiri, Maharashtra, India
| | - Ravindra Pawar
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Ratnagiri, Maharashtra, India
| | | | - A U Pagarkar
- Marine Biological Research Station (MBRS), Ratnagiri, Maharashtra, India
| |
Collapse
|
23
|
Shaw P, Sen A, Mondal P, Dey Bhowmik A, Rath J, Chattopadhyay A. Shinorine ameliorates chromium induced toxicity in zebrafish hepatocytes through the facultative activation of Nrf2-Keap1-ARE pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105622. [PMID: 32947073 DOI: 10.1016/j.aquatox.2020.105622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium, a heavy metal toxicant, abundantly found in the environment showed hepatotoxic potential in zebrafish liver and instigated the Nrf2-Keap1-ARE pathway as a cellular stress response as reported in our previous studies. In the present study we have evaluated the ameliorating effect of shinorine, a mycosporine like amino acid (MAAs) and a mammalian Keap1 antagonist against chromium induced stress in zebrafish hepatocytes. Shinorine was found to be effective in increasing the cell viability of chromium treated hepatocytes through curtailing the cellular ROS content. Trigonelline, an Nrf2 inhibitor was found to reduce the viability of hepatocyte cultures co-exposed to shinorine and chromium. In other words, trigonelline being an Nrf2 blocker neutralised the alleviating effect of shinorine. This indicated that shinorine mediated cyto-protection in Cr [VI]-intoxicated cells is Nrf2 dependent. Further, qRT-PCR analysis revealed comparatively higher expression of nfe2l2 and nqo1 in shinorine + chromium treated hepatocytes than cells exposed to chromium alone indicating a better functioning of Nrf2-Keap1-Nqo1 axis. To further confirm if shinorine can lead to disruption of Nrf2-Keap1 interaction in zebrafish hepatocytes and render cytoprotection to chromium exposure, our in silico analysis through molecular docking revealed that shinorine could bind to the active amino acid residues of the DGR domain, responsible for Nrf2-Keap1 interaction of all the three Keap1s evaluated. This is the first report about shinorine that ameliorates chromium induced toxicity through acting as an Nrf2-Keap1 interaction disruptor. We additionally carried out in-silico pharmacokinetic and ADMET studies to evaluate druglikeness of shinorine whose promising results indicated its potential to be developed as an ideal therapeutic candidate against toxicant induced pathological conditions.
Collapse
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Animesh Sen
- Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | |
Collapse
|
24
|
张 先, 李 勋, 熊 平, 易 传, 陈 曦. [Effects of Panax notoginseng saponins on liver graft rejection in rats and the mechanisms]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:394-400. [PMID: 31068281 PMCID: PMC6744000 DOI: 10.12122/j.issn.1673-4254.2019.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of Panax notoginseng saponins (PNS) on the functional status of Kupffer cells (KCs) and immune environment after liver transplantation and explore the possible mechanisms. METHODS KCs were isolated from rats and assessed for phagocytic activity and viability using ink and Trypan blue staining. The cells were exposed to lipopolysaccharide (LPS) alone or in combination with PNS treatment at 0, 10 or 20 μmol/L. The expressions of the inflammatory factors and the oxidative stress products in the cells and the supernatant were assayed with Western blotting and ELISA; the expression of CD206 was detected using immunofluorescence assay, and the expressions of NF-κB and Keap1-Nrf2-ARE pathway proteins were detected using Western blotting. We established an orthotopic liver transplantation (LT) model in rats and assessed the effect of 200 mg/kg PNS on the graft function, inflammatory factors, pathology of the liver tissue, hepatocyte apoptosis and survival time of the rats in comparison with those in rats receiving a sham operation or PBS treatment following LT. RESULTS Treatment with PNS significantly lowered the levels of inflammatory factors and oxidative stress products and increased the levels of interleukin-10 (IL-10) and SOD in a concentration-dependent manner in the KCs (P < 0.05). Immunofluorescence assay showed that PNS treatment obviously increased the expression of CD206 in the KCs. PNS treatment also significantly reduced the expressions of IRAK4, p-IKKα, p-IκBα, p-p65 and Keap1 proteins and increased the expression levels of Nrf2 and ARE proteins in the KCs (P < 0.05). In the rat models of LT, PNS treatment significantly improved the liver graft function, lowered the expression of the pro-inflammatory factors, and reduced hepatocyte apoptosis as compared with PBS treatment. PNS treatment obviously alleviated pathological changes in the liver graft and significantly prolonged the survival time of the rats following LT (P < 0.05). In addition, injection of GdCl3 to block KC function resulted in severe acute graft rejection in the rats regardless of PNS treatment (P > 0.05). CONCLUSIONS PNS can reduce inflammatory response and oxidative stress in activated KCs by inhibiting NF-κB and Keap1-Nrf2-ARE pathways and promote the polarization of KCs into M2 phenotype to prolong the survival time of rats after LT.
Collapse
Affiliation(s)
- 先兵 张
- 重庆市武隆区人民医院外一科,重庆 408500Department of General Surgery, People's Hospital of Wulong District, Chongqing 408500, China
- 重庆医科大学附属第二医院肝胆外科,重庆 400010Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 勋 李
- 重庆市武隆区人民医院外一科,重庆 408500Department of General Surgery, People's Hospital of Wulong District, Chongqing 408500, China
| | - 平 熊
- 重庆市武隆区人民医院外一科,重庆 408500Department of General Surgery, People's Hospital of Wulong District, Chongqing 408500, China
| | - 传超 易
- 重庆市武隆区人民医院外一科,重庆 408500Department of General Surgery, People's Hospital of Wulong District, Chongqing 408500, China
| | - 曦 陈
- 重庆市武隆区人民医院外一科,重庆 408500Department of General Surgery, People's Hospital of Wulong District, Chongqing 408500, China
- 重庆医科大学附属第二医院肝胆外科,重庆 400010Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|