1
|
Zhang Y, Wang Y, Xing H, Bai Y, Li M, Zhao H, Ding L, Wang W, Bao T. Association between endogenous lactate accumulation and dysregulated activation of the NLRP3 inflammasome pathway in schizophrenia. Sci Rep 2025; 15:19609. [PMID: 40467771 PMCID: PMC12137638 DOI: 10.1038/s41598-025-04823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 05/29/2025] [Indexed: 06/11/2025] Open
Abstract
In this study, we retrospectively analyzed whether serum lactate levels were elevated in patients with schizophrenia (SCZ) and explored cognitive deficits, abnormalities in lactate metabolism, and neuroinflammation in an dizocilpine (MK-801)-induced N-methyl-d-aspartate (NMDA) receptor (NMDAR) inhibition model using the Morris water maze (MWM) test, biochemical assays, immunofluorescence (IF), Western blot (WB), and enzyme-linked immunosorbent assay (ELISA). We found that serum lactate levels were significantly higher than the normal range in patients with schizophrenia, and they were significantly and positively correlated with both length of hospitalization and serum triglyceride levels. In addition, we found that MK-801 induced cognitive deficits in Sprague-Dawley (SD) rats, accompanied by markedly elevated levels of lactate, pyruvate, glutamate and lactate dehydrogenase (LDH) activity in serum and frontal cortex (FCX). MK-801 caused a significant increase in the expression of NOD-, LRR-, and pyrin-containing protein 3 (NLRP3) and Caspase-1 proteins in FCX of rats; and elevated the levels of interleukin (IL)-1β and IL-18 in serum and FCX (P<0.05). We also found that serum lactate was significantly and positively correlated with serum pyruvate and glutamate levels, LDH activity, and IL-1β and IL-18 levels in SD rats. These data suggest that serum lactate is abnormally elevated in both SCZ patients and NMDA receptor inhibition models. Furthermore, there may be a link between MK-801-induced cognitive impairment, elevated serum lactate, and aberrant activation of the NLRP3/Caspase-1/IL-1βinflammatory pathway in rats. Modulation of serum/brain lactate levels and the NLRP3/Caspase-1/IL-1β pathway in SCZ patients may serve as potential targets for improving cognitive impairment in SCZ. Clinical trial registration number: ChiCTR2400091186.
Collapse
Affiliation(s)
- Yingying Zhang
- Psychiatric Hospital of Yunnan Province, The Affiliated Mental Health Center of Kunming Medical University, Kunming, 650032, China
| | - Yanjun Wang
- Psychiatric Hospital of Yunnan Province, The Affiliated Mental Health Center of Kunming Medical University, Kunming, 650032, China
| | - Haoran Xing
- Psychiatric Hospital of Yunnan Province, The Affiliated Mental Health Center of Kunming Medical University, Kunming, 650032, China
| | - Yuncheng Bai
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Mier Li
- Psychiatric Hospital of Yunnan Province, The Affiliated Mental Health Center of Kunming Medical University, Kunming, 650032, China
| | - Haiqiang Zhao
- Psychiatric Hospital of Yunnan Province, The Affiliated Mental Health Center of Kunming Medical University, Kunming, 650032, China
| | - Luanmei Ding
- Psychiatric Hospital of Yunnan Province, The Affiliated Mental Health Center of Kunming Medical University, Kunming, 650032, China
| | - Weiwei Wang
- Department of Geriatrics, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China.
| | - Tianhao Bao
- Psychiatric Hospital of Yunnan Province, The Affiliated Mental Health Center of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
2
|
Xavier G, Mauer J, Ota VK, Santoro ML, Belangero SI. Influence of antipsychotic drugs on microRNA expression in schizophrenia patients - A systematic review. J Psychiatr Res 2024; 176:163-172. [PMID: 38870782 DOI: 10.1016/j.jpsychires.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder with unclear pathophysiology. Moreover, there is no specific biological marker to help clinicians to define a diagnosis, and medication is decided according to the psychiatrist's experience. In this scenario, microRNAs (miRNAs), which are small noncoding RNA molecules that regulate several genes, emerge as potential peripheral biomarkers to help not only the evaluation of the disease state but also the treatment response. Here, we systematically reviewed indexed literature and evaluated follow-up studies investigating the changes in miRNA expression due to antipsychotic treatment. We also assessed target genes and performed pathway enrichment analysis of miRNAs listed in this systematic review. A total of 11 studies were selected according to research criteria, and we observed that 28 miRNAs play a relevant role in schizophrenia pathogenesis or response to antipsychotic treatment, seven of those of extreme interest as possible biomarkers either for condition or treatment. Predicted targets of the miRNAs reviewed here were previously associated with schizophrenia in genome-wide studies, and pathway analysis showed enrichment for genes related to neural processes. With this review, we expect to highlight the importance of miRNAs in schizophrenia pathogenesis and its treatment and point out interesting miRNAs to future studies.
Collapse
Affiliation(s)
- Gabriela Xavier
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Genetics Division - Department of Morphology and Genetics - Universidade Federal de São Paulo, Brazil
| | - Jessica Mauer
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Genetics Division - Department of Morphology and Genetics - Universidade Federal de São Paulo, Brazil
| | - Vanessa K Ota
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Genetics Division - Department of Morphology and Genetics - Universidade Federal de São Paulo, Brazil
| | - Marcos L Santoro
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Disciplina de Biologia Molecular - Departamento de Bioquímica - Universidade Federal de São Paulo, Brazil
| | - Sintia I Belangero
- LiNC, Laboratory of Integrative Neuroscience - Department of Psychiatry - Universidade Federal de São Paulo, Brazil; Genetics Division - Department of Morphology and Genetics - Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
3
|
Li K, Zhu L, Lv H, Bai Y, Guo C, He K. The Role of microRNA in Schizophrenia: A Scoping Review. Int J Mol Sci 2024; 25:7673. [PMID: 39062916 PMCID: PMC11277492 DOI: 10.3390/ijms25147673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Schizophrenia is a serious mental disease that is regulated by multiple genes and influenced by multiple factors. Due to the complexity of its etiology, the pathogenesis is still unclear. MicroRNAs belong to a class of small non-coding RNAs that are highly conserved in endogenous evolution and play critical roles in multiple biological pathways. In recent years, aberrant miRNA expression has been implicated in schizophrenia, with certain miRNAs emerging as potential diagnostic and prognostic biomarkers for this disorder. In this review, our objective is to investigate the differential expression of miRNAs in schizophrenia, elucidate their potential mechanisms of action, and assess their feasibility as biomarkers. The PubMed electronic database and Google Scholar were searched for the years 2003 to 2024. The study focused on schizophrenia and miRNA as the research topic, encompassing articles related to biomarkers, etiology, action mechanisms, and differentially expressed genes associated with schizophrenia and miRNA. A total of 1488 articles were retrieved, out of which 49 were included in this scope review. This study reviewed 49 articles and identified abnormal expression of miRNA in different tissues of both schizophrenia patients and healthy controls, suggesting its potential role in the pathogenesis and progression of schizophrenia. Notably, several specific miRNAs, including miR-34a, miR-130b, miR-193-3p, miR-675-3p, miR-1262, and miR-218-5p, may serve as promising biological markers for diagnosing schizophrenia. Furthermore, this study summarized potential mechanisms through which miRNAs may contribute to the development of schizophrenia. The studies within the field of miRNA's role in schizophrenia encompass a broad spectrum of focus. Several selected studies have identified dysregulated miRNAs associated with schizophrenia across various tissues, thereby highlighting the potential utility of specific miRNAs as diagnostic biomarkers for this disorder. Various mechanisms underlying dysregulated miRNAs in schizophrenia have been explored; however, further investigations are needed to determine the exact mechanisms by which these dysregulated miRNAs contribute to the pathogenesis of this condition. The exploration of miRNA's involvement in the etiology and identification of biomarkers for schizophrenia holds significant promise in informing future clinical trials and advancing our understanding in this area.
Collapse
Affiliation(s)
| | | | | | | | | | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (K.L.); (L.Z.); (H.L.); (Y.B.); (C.G.)
| |
Collapse
|
4
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
5
|
Chen N, Wan G, Zeng X. Integrated Whole-Transcriptome Profiling and Bioinformatics Analysis of the Polypharmacological Effects of Ganoderic Acid Me in Colorectal Cancer Treatment. Front Oncol 2022; 12:833375. [PMID: 35574354 PMCID: PMC9093067 DOI: 10.3389/fonc.2022.833375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Ganoderic acid Me (GA-Me) is a natural bioactive compound derived from Ganoderma lucidum. Our present results suggested that GA-Me inhibited proliferation, induced DNA fragmentation and significantly activated caspase-9 and caspase-3 in HCT116 cells. As shown in our previous studies, GA-Me targets several genes to prevent cancer, including colorectal cancer (CRC). Thus, we hypothesized that GA-Me might be a multitarget ligand against cancer. However, its exact mechanism in CRC remains unclear. Here, whole-transcriptome sequencing was employed to assess the long noncoding RNA (lncRNA), circular RNA (circRNA), microRNA (miRNA), and messenger RNA (mRNA) profiles of GA-Me-treated HCT116 cells. In total, 1572 differentially expressed (DE) lncRNAs, 123 DEcircRNAs, 87 DEmiRNAs, and 1508 DEmRNAs were identified. DCBLD2 and RAPGEF5 were validated as two core mRNAs in the DElncRNA, DEcircRNA, and DEmiRNA networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed the biological functions and potential mechanisms of TCONS-00008997, XR-925056.2, circRNA-07908, hsa-miR-100-3p, hsa-miR-1257, hsa-miR-3182, NAV3, ADAM20, and STARD4, which were altered after GA-Me treatment. The regulatory relationships of the XR-925056.2-hsa-miR-3182-NAV3/ADAM20/STARD4, circRNA-07908|Chr22:38986298-39025349-hsa-miR-3182-NAV3/ADAM20, ENST00000414039/ENST00000419190-novel874_mature-MMP9 and circRNA-00314|Chr1:35470863-35479212/circRNA-05460|Chr17:72592203-72649268-novel874_mature-MMP9 immune-regulatory networks involved both noncoding RNAs (ncRNAs) and mRNAs. Molecular docking studies showed that Zn2+ and the His201, His205, His211, Glu202, and Ala165 residues of MMP2 contributed to its high affinity for GA-Me. Zn2+ and the Glu402 and Gly186 residues of MMP9 are important for its interaction with GA-Me. Our results suggested and confirmed that GA-Me is a potential multitarget lead compound for CRC treatment with unique polypharmacological advantages.
Collapse
Affiliation(s)
- Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen,China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Guoqing Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen,China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen,China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
| |
Collapse
|