1
|
Wu Y, Yang L, Li Z, Chen Q, Hu J. Polyphyllin VII Enhances the Antitumor Activity of Cisplatin in Non-Small Cell Lung Cancer Cells by Inducing Ferroptosis and Enhancing Apoptosis. J Biochem Mol Toxicol 2025; 39:e70186. [PMID: 40165507 DOI: 10.1002/jbt.70186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 02/08/2025] [Indexed: 04/02/2025]
Abstract
Cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC) is a common cause of treatment failure and a significant contributor to increased mortality. To tackle this issue, the integration of traditional Chinese medicine with chemotherapy has been proposed as a promising approach. The potential synergistic effect of combining polyphyllin VII (PPVII) and DDP in overcoming DDP resistance in NSCLC cells has not been thoroughly investigated yet. In this study, H1299 cells were exposed to gradient concentrations of PPVII and DDP to determine their 50% inhibitory concentration values, and the most effective concentration was applied in subsequent experiments. The combination of PPVII and DDP was evaluated for its effects on H1299 cell proliferation, apoptosis, viability, and the expression of proteins linked to apoptosis and ferroptosis. To further elucidate the underlying mechanisms, the impact of the combination on DNA damage in H1299 cells was also examined. Our results demonstrated that PPVII significantly potentiated the antitumor effects of DDP in H1299 cells in a dose-dependent manner (p < 0.05). Furthermore, PPVII was observed to work synergistically with DDP to suppress proliferation and promote apoptosis in H1299 cells (p < 0.05). Western blotting analysis proved that the combination treatment upregulated proapoptotic proteins (B-cell lymphoma 2-associated X protein, cleaved-caspase 3 and cleaved-PARP), downregulated antiapoptotic protein (Bcl-2), and promoted ferroptosis-associated proteins (long-chain acyl-coenzyme A synthase 4 and NADPH oxidase 4) as well as DNA damage-associated protein (γH2AX) (p < 0.05). Overall, the combination of PPVII and DDP significantly enhanced antitumor activity in H1299 cells through the modulation of DNA damage and ferroptosis, suggesting its potential as an effective therapeutic approach against DDP-resistant NSCLC.
Collapse
Affiliation(s)
- Yuanzhou Wu
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Yang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zizhao Li
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qunqing Chen
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Hu
- Department Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Wang DD, Wang ZZ, Liu WC, Qian XK, Zhu YD, Wang TG, Pan SM, Zou LW. Pyrazolone compounds could inhibit CES1 and ameliorates fat accumulation during adipocyte differentiation. Bioorg Chem 2024; 150:107536. [PMID: 38878751 DOI: 10.1016/j.bioorg.2024.107536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/21/2024]
Abstract
Carboxylesterase 1 (CES1), a member of the serine hydrolase superfamily, is involved in a wide range of xenobiotic and endogenous substances metabolic reactions in mammals. The inhibition of CES1 could not only alter the metabolism and disposition of related drugs, but also be benefit for treatment of metabolic disorders, such as obesity and fatty liver disease. In the present study, we aim to develop potential inhibitors of CES1 and reveal the preferred inhibitor structure from a series of synthetic pyrazolones (compounds 1-27). By in vitro high-throughput screening method, we found compounds 25 and 27 had non-competitive inhibition on CES1-mediated N-alkylated d-luciferin methyl ester (NLMe) hydrolysis, while compound 26 competitively inhibited CES1-mediated NLMe hydrolysis. Additionally, Compounds 25, 26 and 27 can inhibit CES1-mediated fluorescent probe hydrolysis in live HepG2 cells with effect. Besides, compounds 25, 26 and 27 could effectively inhibit the accumulation of lipid droplets in mouse adipocytes cells. These data not only provided study basis for the design of newly CES1 inhibitors. The present study not only provided the basis for the development of lead compounds for novel CES1 inhibitors with better performance, but also offered a new direction for the explore of candidate compounds for the treatment of hyperlipidemia and related diseases.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Zhen-Zhen Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Wen-Cai Liu
- Asymchem Biotechnology (Tianjin) Co., Ltd, Tianjin 300457, China
| | - Xing-Kai Qian
- Translational Medicine Research Center, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China.
| | - Ya-Di Zhu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Tie-Gang Wang
- Tangshan Boshide Medical Devices Co., Ltd, Tangshan 063599, China
| | - Shu-Mei Pan
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Du SG, Zhang HM, Ji YX, Tian YL, Wang D, Zhu K, Zhang QG, Liu SP. Polyphyllin VII Promotes Apoptosis in Breast Cancer by Inhibiting MAPK/ERK Signaling Pathway through Downregulation of SOS1. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:885-904. [PMID: 38716619 DOI: 10.1142/s0192415x24500368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Polyphyllin VII is a biologically active herbal monomer extracted from the traditional Chinese herbal medicine Chonglou. Many studies have demonstrated the anticancer activity of polyphyllin VII against various types of cancers, such as colon, liver, and lung cancer, but its effect on breast cancer has not been elucidated. In this study, we demonstrate that polyphyllin VII inhibited proliferation, increased production of intracellular reactive oxygen species, and decreased mitochondrial membrane potential in breast cancer cells. Notably, polyphyllin VII also induced apoptosis via the mitochondrial pathway. Transcriptome sequencing was used to analyze the targets of PPVII in regulating breast cancer cells. Mechanistic studies showed that polyphyllin VII downregulated Son of Sevenless1 (SOS1) and inhibited the MAPK/ERK pathway. Furthermore, PPVII exerted strong antitumor effects in vivo in nude mice injected with breast cancer cells. Our results suggest that PPVII may promote apoptosis through regulating the SOS1/MAPK/ERK pathway, making it a possible candidate target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shu-Guang Du
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
- Laboratory Department, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Hua-Min Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P. R. China
| | - Yun-Xia Ji
- Laboratory Department, Zhangjiakou First Hospital, Zhangjiakou 075041, P. R. China
| | - Yu-Lin Tian
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Dan Wang
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Kun Zhu
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Shuang-Ping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| |
Collapse
|
4
|
Bai Y, Li M, Geng D, Liu S, Chen Y, Li S, Zhang S, Wang H. Polyphyllins in cancer therapy: A systematic review and meta-analysis of animal studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155096. [PMID: 37769554 DOI: 10.1016/j.phymed.2023.155096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Polyphyllins are secondary metabolites that inhibit the growth of various tumours; however, clinical trials on their use are lacking. HYPOTHESIS/PURPOSE In this study, we aimed to evaluate the antitumour efficacy of polyphyllins in animal models. STUDY DESIGN Systematic review and meta-analysis. METHODS Electronic bibliographic databases including PubMed, Web of Science, China Science and Technology Journal Database, Wanfang Data, and China National Knowledge Infrastructure were searched for relevant articles. The Systematic Review Centre for Laboratory Animal Experimentation's Risk of Bias tool was used to assess methodological quality. RevMan V.5.4 (Cochrane) and Stata MP 17 software were used to perform a meta-analysis. RESULTS Thirty articles were analysed including 33 independent experiments and 452 animals in this paper. Overall, tumour volume (standardised mean difference [SMD]: -3.35; 95 % confidence interval [CI]: -4.27 to -2.43; p < 0.00001) and tumour weight (SMD: -3.79; 95% CI: -4.75 to -2.82; p < 0.00001) were reduced by polyphyllins, which showed a good cancer therapeutic effect; mouse weight (SMD: -0.22; 95% CI: -0.61 to -0.18; p = 0.28) was insignificantly different, which indicated that polyphyllins did not affect the growth of the mice within the test range. Moreover, the molecular mechanisms of the antitumour activity of polyphyllins were explained, including the P53, NF-kB, AMPK, and ERK signalling pathways. CONCLUSION Polyphyllins inhibit the growth of cancers within the experimental dose. However, due to heterogeneity of the results of the included studies, more studies are needed to support this conclusion.
Collapse
Affiliation(s)
- Yan Bai
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Mengmeng Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Dongjie Geng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shouzan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Botanical Garden, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Ye Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shan Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shaobo Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311300, China
| | - Hongzhen Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
5
|
Zhang Y, Zhang J, Sun J, Zhang M, Liu X, Yang L, Yin Y. Polyphyllin I, a strong antifungal compound against Candida albicans. APMIS 2023; 131:626-635. [PMID: 37754556 DOI: 10.1111/apm.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
This study was performed to explore the antifungal and antibiofilm effects of polyphyllin I (PPI) on Candida albicans. Microdilution assay was performed to determine the minimal inhibitory concentrations (MIC) of PPI against Candida species. Adhesion assay, hyphal growth assay, biofilm formation, and development were used to test the impacts of PPI on C. albicans virulence factors. Propidium iodide staining was performed to test whether the permeability of cell membrane was influenced by PPI. PPI showed significant antifungal activities against several Candida species, with MIC below or equal to 6.25 μM. PPI also inhibited the adhesion to polystyrene surfaces, hyphal growth, and biofilm formation. PPI significantly increased the permeability of C. albicans cell membrane. In sum, PPI can suppress the planktonic growth and biofilm of C. albicans and its mechanism involves the increased permeability of cell membrane.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Jingxiao Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jian Sun
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Min Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Wei F, Nian Q, Zhao M, Wen Y, Yang Y, Wang J, He Z, Chen X, Yin X, Wang J, Ma X, Chen Y, Feng P, Zeng J. Natural products and mitochondrial allies in colorectal cancer therapy. Biomed Pharmacother 2023; 167:115473. [PMID: 37713992 DOI: 10.1016/j.biopha.2023.115473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Colorectal cancer (CRC) is a globally prevalent malignancy with a high potential for metastasis. Existing cancer treatments have limitations, including drug resistance and adverse effects. Researchers are striving to develop effective therapies to address these challenges. Impressively, contemporary research has discovered that many natural products derived from foods, plants, insects, and marine invertebrates can suppress the progression, metastasis, and invasion of CRC. In this review, we conducted a comprehensive search of the CNKI, PubMed, Embase, and Web of Science databases from inception to April 2023 to evaluate the efficacy of natural products targeting mitochondria to fight against CRC. Mitochondria are intracellular energy factories involved in cell differentiation, signal transduction, cell cycle regulation, apoptosis, and tumorigenesis. The identified natural products have been classified and summarized based on their mechanisms of action. These findings indicate that natural products can induce apoptosis in colorectal cancer cells by inhibiting the mitochondrial respiratory chain, ROS elevation, disruption of mitochondrial membrane potential, the release of pro-apoptotic factors, modulation of the Bcl-2 protein family to facilitate cytochrome c release, induction of apoptotic vesicle activity by activating the caspase protein family, and selective targeting of mitochondrial division. Furthermore, diverse apoptotic signaling pathways targeting mitochondria, such as the MAPK, p53, STAT3, JNK and AKT pathway, have been triggered by natural products. Natural products such as diosgenin, allopurinol, and clausenidin have demonstrated low toxicity, high efficacy, and multi-targeted properties. Mitochondria-targeting natural products have great potential for overcoming the challenges of CRC therapy.
Collapse
Affiliation(s)
- Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Maoyuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Zhelin He
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiaoyan Chen
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiang Yin
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Jian Wang
- Endoscopy center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Peimin Feng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
7
|
Kong F, Wang C, Zhang J, Wang X, Sun B, Xiao X, Zhang H, Song Y, Jia Y. Chinese herbal medicines for prostate cancer therapy: From experimental research to clinical practice. CHINESE HERBAL MEDICINES 2023; 15:485-495. [PMID: 38094009 PMCID: PMC10715895 DOI: 10.1016/j.chmed.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/20/2023] [Indexed: 06/26/2024] Open
Abstract
Prostate cancer remains the second most common malignancy in men worldwide, is a global health issue, and poses a huge health burden. Precision medicine provides more treatment options for prostate cancer patients, but its popularity, drug resistance, and adverse reactions still need to be focused on. Chinese herbal medicines (CHMs) have been widely accepted as an alternative therapy for cancer, with the advantages of multiple targets, multiple pathways, and low toxicity. We searched the experimental research and clinical practice of CHMs for prostate cancer treatment published in PubMed, Embase, and Web of Science in the last five years. We found five CHM formulas and six single CHM extracts as well as 12 CHM-derived compounds, which showed induction of apoptosis, autophagy, and cell cycle arrest, suppression of angiogenesis, proliferation, and migration of prostate cancer cells, reversal of drug resistance, and enhancement of anti-tumor immunity. The mechanisms of action include the PI3K/Akt/mTOR, AR, EGFR and Wnt/β-catenin signaling pathways, which are commonly implicated in the development of prostate cancer. We also summarized the advantages of CHMs in patients with hormone-sensitive and castration-resistant prostate cancer and provided ideas for their further experimental design and application.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiaoqun Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haojian Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqi Song
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
8
|
Li J, Jia J, Zhu W, Chen J, Zheng Q, Li D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front Pharmacol 2023; 14:1095786. [PMID: 36895945 PMCID: PMC9989034 DOI: 10.3389/fphar.2023.1095786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.
Collapse
Affiliation(s)
- Jie Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinhao Jia
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Weiwei Zhu
- Clinical Trial Agency, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Jianfei Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
9
|
Wu H, Qian D, Bai X, Sun S. Targeted Pyroptosis Is a Potential Therapeutic Strategy for Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2515525. [PMID: 36467499 PMCID: PMC9715319 DOI: 10.1155/2022/2515525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023]
Abstract
As a type of regulated cell death (RCD) mode, pyroptosis plays an important role in several kinds of cancers. Pyroptosis is induced by different stimuli, whose pathways are divided into the canonical pathway and the noncanonical pathway depending on the formation of the inflammasomes. The canonical pathway is triggered by the assembly of inflammasomes, and the activation of caspase-1 and then the cleavage of effector protein gasdermin D (GSDMD) are promoted. While in the noncanonical pathway, the caspase-4/5/11 (caspase 4/5 in humans and caspase 11 in mice) directly cleave GSDMD without the assembly of inflammasomes. Pyroptosis is involved in various cancers, such as lung cancer, gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma. Pyroptosis in gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma is related to the canonical pathway, while both the canonical and noncanonical pathway participate in lung cancer. Moreover, simvastatin, metformin, and curcumin have effect on these cancers and simultaneously promote the pyroptosis of cancer cells. Accordingly, pyroptosis may be an important therapeutic target for cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Clinical Medicine, Three Class, 2020 Grade, Kunming Medical University, Kunming, China
| | - Dianlun Qian
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiangfeng Bai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Wang Y, Huang X, Xian B, Jiang H, Zhou T, Chen S, Wen F, Pei J. Machine learning and bioinformatics-based insights into the potential targets of saponins in Paris polyphylla smith against non-small cell lung cancer. Front Genet 2022; 13:1005896. [PMID: 36386821 PMCID: PMC9649596 DOI: 10.3389/fgene.2022.1005896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Lung cancer has the highest mortality rate among cancers worldwide, and non-small cell lung cancer (NSCLC) is the major lethal factor. Saponins in Paris polyphylla smith exhibit antitumor activity against non-small cell lung cancer, but their targets are not fully understood. Methods: In this study, we used differential gene analysis, lasso regression analysis and support vector machine recursive feature elimination (SVM-RFE) to screen potential key genes for NSCLC by using relevant datasets from the GEO database. The accuracy of the signature genes was verified by using ROC curves and gene expression values. Screening of potential active ingredients for the treatment of NSCLC by molecular docking of the reported active ingredients of saponins in Paris polyphylla Smith with the screened signature genes. The activity of the screened components and their effects on key genes expression were further validated by CCK-8, flow cytometry (apoptosis and cycling) and qPCR. Results: 204 differential genes and two key genes (RHEBL1, RNPC3) stood out in the bioinformatics analysis. Overall survival (OS), First-progression survival (FP) and post-progression survival (PPS) analysis revealed that low expression of RHEBL1 and high expression of RNPC3 indicated good prognosis. In addition, Polyphyllin VI(PPVI) and Protodioscin (Prot) effectively inhibited the proliferation of non-small cell lung cancer cell line with IC50 of 4.46 μM ± 0.69 μM and 8.09 μM ± 0.67μM, respectively. The number of apoptotic cells increased significantly with increasing concentrations of PPVI and Prot. Prot induces G1/G0 phase cell cycle arrest and PPVI induces G2/M phase cell cycle arrest. After PPVI and Prot acted on this cell line for 48 h, the expression of RHEBL1 and RNPC3 was found to be consistent with the results of bioinformatics analysis. Conclusion: This study identified two potential key genes (RHEBL1 and RNPC3) in NSCLC. Additionally, PPVI and Prot may act on RHEBL1 and RNPC3 to affect NSCLC. Our findings provide a reference for clinical treatment of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin Pei
- *Correspondence: Feiyan Wen, ; Jin Pei,
| |
Collapse
|
11
|
Mechanism Study of Cinnamomi Ramulus and Paris polyphylla Sm. Drug Pair in the Treatment of Adenomyosis by Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2624434. [PMID: 36016675 PMCID: PMC9398691 DOI: 10.1155/2022/2624434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the molecular mechanism of the Cinnamomi ramulus and Paris polyphylla Sm. (C-P) drug pair in the treatment of adenomyosis (AM) based on network pharmacology and animal experiments. Methods. Via a network pharmacology strategy, a drug-component-target-disease network (D-C-T-D) and protein–protein interaction (PPI) network were constructed to explore the core components and key targets of C-P drug pair therapy for AM, and the core components and key targets were verified by molecular docking. Based on the results of network pharmacology, animal experiments were performed for further verification. The therapeutic effect of the C-P drug pair on uterine ectopic lesions was evaluated in a constructed AM rat model. Results. A total of 30 components and 45 corresponding targets of C-P in the treatment of AM were obtained through network pharmacology. In the D-C-T-D network and PPI network, 5 core components and 10 key targets were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the PI3K signaling pathway was the most significantly enriched nontumor pathway. Molecular docking showed that most of the core components and key targets docked completely. Animal experiments showed that the C-P drug pair significantly ameliorated the pathological changes of endometriotic lesions in AM model rats and inhibited PI3K and Akt gene expression, and PI3K and Akt protein phosphorylation. In addition, treatment with the C-P drug pair promoted AM cell apoptosis; upregulated the protein expression of Bax, Caspase-3, and cleaved Caspase-9; and restrained Bcl-2 expression. Conclusions. We propose that the pharmacological mechanism of the C-P drug pair in the treatment of AM is related to inhibition of the PI3K/Akt pathway and promotion of apoptosis in AM ectopic lesions.
Collapse
|