1
|
de Lima Conceição MR, Teixeira-Fonseca JL, Orts DJB, Nascimento DS, Dantas CO, de Vasconcelos CML, Souza DS, Roman-Campos D. Exploring the interplay between extracellular pH and Dronedarone's pharmacological effects on cardiac function. Eur J Pharmacol 2024; 983:176980. [PMID: 39241944 DOI: 10.1016/j.ejphar.2024.176980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Dronedarone (DRN) is a clinically used drug to mitigate arrhythmias with multichannel block properties, including the sodium channel Nav1.5. Extracellular acidification is known to change the pharmacological properties of several antiarrhythmic drugs. Here, we explore how modification in extracellular pH (pHe) shapes the pharmacological profile of DRN upon Nav1.5 sodium current (INa) and in the ex vivo heart preparation. Embryonic human kidney cells (HEK293T/17) were used to transiently express the human isoform of Nav1.5 α-subunit. Patch-Clamp technique was employed to study INa. Neurotoxin-II (ATX-II) was used to induce the late sodium current (INaLate). Additionally, ex vivo Wistar male rat preparations in the Langendorff system were utilized to study electrocardiogram (ECG) waves. DRN preferentially binds to the closed state inactivation mode of Nav1.5 at pHe 7.0. The recovery from INa inactivation was delayed in the presence of DRN in both pHe 7.0 and 7.4, and the use-dependent properties were distinct at pHe 7.0 and 7.4. However, the potency of DRN upon the peak INa, the voltage dependence for activation, and the steady-state inactivation curves were not altered in both pHe tested. Also, the pHe did not change the ability of DRN to block INaLate. Lastly, DRN in a concentration and pH dependent manner modulated the QRS complex, QT and RR interval in clinically relevant concentration. Thus, the pharmacological properties of DRN upon Nav1.5 and ex vivo heart preparation partially depend on the pHe. The pHe changed the biological effect of DRN in the heart electrical function in relevant clinical concentration.
Collapse
Affiliation(s)
- Michael Ramon de Lima Conceição
- Laboratório de CardioBiologia, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Jorge Lucas Teixeira-Fonseca
- Laboratório de CardioBiologia, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Diego Jose Belato Orts
- Laboratório de CardioBiologia, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Daniella Santos Nascimento
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Cácia Oliveira Dantas
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Diego Santos Souza
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Danilo Roman-Campos
- Laboratório de CardioBiologia, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
2
|
Teixeira-Fonseca JL, Orts DJBY, Silva PLD, Conceição MRDL, Hermes H, Prudencio CR, Roman-Campos D. In Vivo Anti-Inflammatory Activity of D-Limonene in a Rat Model of Monocrotaline-Induced Pulmonary Hypertension: Implications to the Heart Function. Arq Bras Cardiol 2024; 121:e20240195. [PMID: 39699454 DOI: 10.36660/abc.20240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND D-limonene (D-L) is the major monocyclic monoterpene in citrus plants with anti-inflammatory properties. Pulmonary hypertension (PH) can cause right heart dysfunction and increases the risk of death, partially due to inflammatory response in the heart. OBJECTIVE To evaluate the possible protective effect of D-L on cardiac function in a rat model of monocrotaline-induced PH (MCT-PH). METHODS Electrocardiogram was monitored in vivo. Masson Trichrome technique was deployed to verify fibrosis in the heart. Contractility function of isolated atrial tissue was studied using organ bath chamber. Real-time quantitative PCR was applied to quantify inflammation in the right ventricle. RESULTS The MCT-PH group showed electrical and structural heart remodeling, with the presence of fibrosis in the cardiac tissue and in vivo electrocardiographic changes. Treatment with D-L partially prevented the development of tissue fibrosis and the increase in P wave duration in the MCT-PH group. The contraction and relaxation velocity of isolated right and left atrium were accelerated in CTR and MCT-PH animals treated with D-L. Finally, D-L was able to prevent the abnormal expression of the key inflammatory cytokines (interleukin 1-β, interleukin 6 and tumor necrosis factor-α) in the right ventricle of MCT-PH animals. D-L was able to enhance the production of the anti-inflammatory cytokine Interleukin-10. CONCLUSION Our results showed that in vivo administration of D-L partially prevented the molecular, structural and functional remodeling of the heart in the MCT-PH model with attenuation of the inflammatory response in the heart.
Collapse
Affiliation(s)
| | | | | | | | - Hernan Hermes
- Instituto Adolfo Lutz, São Paulo, SP - Brasil
- Universidade São Paulo, São Paulo, SP - Brasil
| | - Carlos R Prudencio
- Instituto Adolfo Lutz, São Paulo, SP - Brasil
- Universidade São Paulo, São Paulo, SP - Brasil
| | | |
Collapse
|
3
|
de Lima Conceição MR, Teixeira-Fonseca JL, Marques LP, Souza DS, da Silva Alcântara F, Orts DJB, Roman-Campos D. Extracellular acidification reveals the antiarrhythmic properties of amiodarone related to late sodium current-induced atrial arrhythmia. Pharmacol Rep 2024; 76:585-599. [PMID: 38619735 DOI: 10.1007/s43440-024-00597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.
Collapse
Affiliation(s)
- Michael Ramon de Lima Conceição
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Jorge Lucas Teixeira-Fonseca
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Leisiane Pereira Marques
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Diego Santos Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Fabiana da Silva Alcântara
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Diego Jose Belato Orts
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Danilo Roman-Campos
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil.
| |
Collapse
|
4
|
Teixeira-Fonseca JL, Joviano-Santos JV, da Silva Alcântara F, de Lima Conceição MR, Leal-Silva P, Roman-Campos D. Evaluation of right atrium structure and function in a rat model of monocrotaline-induced pulmonary hypertension: Exploring the possible antiarrhythmic properties of amiodarone. Clin Exp Pharmacol Physiol 2023; 50:893-902. [PMID: 37610053 DOI: 10.1111/1440-1681.13813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
Atrial arrhythmias (AA) are common in pulmonary hypertension (PH) and are closely associated with poor clinical outcomes. One of the most studied models to investigate PH is the rat model of monocrotaline (MCT) induced PH (MCT-PH). To date, little is known about right atrium (RA) function in the MCT-PH model and the propensity of RA to develop arrhythmias. Therefore, the aim of the study was to evaluate the function of the RA of control (CTRL) and MCT treated rats, and the ability of amiodarone, a classical antiarrhythmic, to prevent the occurrence of AA in the RA in MCT-PH rats. RA function was studied in MCT-PH rats 20 days after a single subcutaneous injection of MCT 50 mg/kg. The histological results indicated the presence of RA and right ventricular hypertrophy. Surface electrocardiogram demonstrated increased P wave duration, PR wave duration and QT interval in MCT rats. RA from MCT rats were more susceptible to develop ex vivo burst pacing arrhythmias when compared to CTRL. Intriguingly, amiodarone in clinical relevant concentration was not able to prevent the occurrence arrhythmias in RA from MCT-PH animals. Hence, we conclude that the rat model of MCT-PH impairs RA structure and function, and acute exposure of RA to amiodarone in clinical relevant concentration is not able to attenuate the onset of arrhythmias in the ex vivo RA preparation.
Collapse
Affiliation(s)
- Jorge Lucas Teixeira-Fonseca
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | | | - Fabiana da Silva Alcântara
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | - Michael Ramon de Lima Conceição
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | - Polyana Leal-Silva
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | - Danilo Roman-Campos
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Teixeira-Fonseca JL, Joviano-Santos JV, Machado FS, da Silva PL, Conceição MRL, Roman-Campos D. Isolated Left Atrium Morphofunctional Study of an Experimental Pulmonary Hypertension Model in Rats. Arq Bras Cardiol 2023; 120:e20230188. [PMID: 37878960 PMCID: PMC10548886 DOI: 10.36660/abc.20230188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The high incidence of atrial arrhythmias in pulmonary hypertension (PH) might be associated with poor prognosis, and the left atrium (LA) may play a role in this. An important finding in PH studies is that LA remodeling is underestimated. OBJECTIVE This study investigated LA morphology and mechanical function, as well as the susceptibility to develop arrhythmias in a monocrotaline-induced PH (MCT-PH) model. METHODS Wistar rats aged 4 weeks received 50 mg/kg of MCT. Electrocardiography and histology analysis were performed to evaluate the establishment of the MCT-PH model. The tissue was mounted in an isolated organ bath to characterize the LA mechanical function. RESULTS Compared with the control group (CTRL), the MCT-PH model presented LA hypertrophy and changes in cardiac electrical activity, as evidenced by increased P wave duration, PR and QT interval in MCT-PH rats. In LA isolated from MCT-PH rats, no alteration in inotropism was observed; however, the time to peak contraction was delayed in the experimental MCT-PH group. Finally, there was no difference in arrhythmia susceptibility of LA from MCT-PH animals after the burst pacing protocol. CONCLUSION The morphofunctional remodeling of the LA did not lead to increased susceptibility to ex vivo arrhythmia after application of the burst pacing protocol.
Collapse
Affiliation(s)
| | - Julliane Vasconcelos Joviano-Santos
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasil Faculdade de Ciências Médicas de Minas Gerais , Belo Horizonte , MG – Brasil
| | - Fabiana Silva Machado
- Universidade Federal de São PauloSão PauloSPBrasil Universidade Federal de São Paulo , São Paulo , SP – Brasil
| | - Polyana Leal da Silva
- Universidade Federal de São PauloSão PauloSPBrasil Universidade Federal de São Paulo , São Paulo , SP – Brasil
| | | | - Danilo Roman-Campos
- Universidade Federal de São PauloSão PauloSPBrasil Universidade Federal de São Paulo , São Paulo , SP – Brasil
| |
Collapse
|