1
|
Bagger SM, Schihada H, Walser ALS, Drzazga AK, Grätz L, Palmisano T, Kuhn CK, Mavri M, Mølleskov-Jensen AS, Tall GG, Schöneberg T, Mathiasen SJ, Javitch JA, Schulte G, Spiess K, Rosenkilde MM. Complex G-protein signaling of the adhesion GPCR, ADGRA3. J Biol Chem 2025; 301:108441. [PMID: 40127866 PMCID: PMC12059339 DOI: 10.1016/j.jbc.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
ADGRA3 (GPR125) is an orphan adhesion G protein-coupled receptor (aGPCR) involved in planar cell polarity, primarily through recruitment of the signaling components disheveled (DVL) during vertebrate gastrulation and discs large homolog 1, implicated in cancer. Limited knowledge exists of the canonical G protein-coupled receptor pathways downstream of ADGRA3. Here, we employed a series of human cell line-based signaling assays to gain insight into the G protein-mediated signaling of ADGRA3. We designed ADGRA3 constructs based on transcript variant analysis in publicly available human liver and brain RNA-seq datasets. Cleavage in the GPCR autoproteolysis site (GPS) is an aGPCR hallmark; thus, we generated a truncated ADGRA3 (C-terminal fragment, CTF) corresponding to a potential cleavage at the GPS. We found low-level activation of Gi and Gs by ADGRA3 and slightly more by its CTF. As the N terminus of the CTF constitutes a class-defined tethered agonist (so-called stachel peptide), we removed the initial three amino acids of the CTF. This resulted in abrogated G protein-mediated signaling, as observed for other aGPCRs. Due to the central role of ADGRA3 in planar cell polarity signaling through DVL recruitment, we investigated the G-protein signaling in the absence of DVL1-3 and found it sustained. No transcriptional activation was observed in an assay of downstream β-catenin activity. Collectively, this establishes classical G protein-mediated signaling for ADGRA3.
Collapse
Affiliation(s)
- Sofie M Bagger
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schihada
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Anna L S Walser
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Drzazga
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Tiago Palmisano
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Christina K Kuhn
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Maša Mavri
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Sophie Mølleskov-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Torsten Schöneberg
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Signe J Mathiasen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
3
|
Rosenkilde MM, Mathiasen S. Adhesion G protein-coupled receptor's structure, function and role in biology-Status from the 10 th adhesion GPCR workshop in Copenhagen, 2022. Basic Clin Pharmacol Toxicol 2023; 133:281-285. [PMID: 37635311 DOI: 10.1111/bcpt.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Mathiasen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|