1
|
Little B, Flowers C, Blamire A, Thelwall P, Taylor JP, Gallagher P, Cousins DA, Wang Y. Multivariate brain-cognition associations in euthymic bipolar disorder. Bipolar Disord 2024; 26:604-616. [PMID: 39138611 DOI: 10.1111/bdi.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND People with bipolar disorder (BD) tend to show widespread cognitive impairment compared to healthy controls. Impairments in processing speed (PS), attention and executive function (EF) may represent 'core' impairments that have a role in wider cognitive dysfunction. Cognitive impairments appear to relate to structural brain abnormalities in BD, but whether core deficits are related to particular brain regions is unclear and much of the research on brain-cognition associations is limited by univariate analysis and small samples. METHODS Euthymic BD patients (n = 56) and matched healthy controls (n = 26) underwent T1-weighted MRI scans and completed neuropsychological tests of PS, attention and EF. We utilised public datasets to develop normative models of cortical thickness (n = 5977) to generate robust estimations of cortical abnormalities in patients. Canonical correlation analysis was used to assess multivariate brain-cognition associations in BD, controlling for age, sex and premorbid IQ. RESULTS BD showed impairments on tests of PS, attention and EF, and abnormal cortical thickness in several brain regions compared to healthy controls. Impairments in tests of PS and EF were most strongly associated with cortical thickness in the left inferior temporal, right entorhinal and right temporal pole areas. CONCLUSION Impairments in PS, attention and EF can be observed in euthymic BD and may be related to abnormal cortical thickness in temporal regions. Future research should continue to leverage normative modelling and multivariate methods to examine complex brain-cognition associations in BD. Future research may benefit from exploring covariance between traditional brain structural morphological metrics such as cortical thickness, cortical volume and surface area.
Collapse
Affiliation(s)
- Bethany Little
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex Biosystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Carly Flowers
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Blamire
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Thelwall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Gallagher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David Andrew Cousins
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Yujiang Wang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex Biosystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Jørgensen KN, Nerland S, Slapø NB, Norbom LB, Mørch-Johnsen L, Wortinger LA, Barth C, Andreou D, Maximov II, Geier OM, Andreassen OA, Jönsson EG, Agartz I. Assessing regional intracortical myelination in schizophrenia spectrum and bipolar disorders using the optimized T1w/T2w-ratio. Psychol Med 2024; 54:2369-2379. [PMID: 38563302 DOI: 10.1017/s0033291724000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Dysmyelination could be part of the pathophysiology of schizophrenia spectrum (SCZ) and bipolar disorders (BPD), yet few studies have examined myelination of the cerebral cortex. The ratio of T1- and T2-weighted magnetic resonance images (MRI) correlates with intracortical myelin. We investigated the T1w/T2w-ratio and its age trajectories in patients and healthy controls (CTR) and explored associations with antipsychotic medication use and psychotic symptoms. METHODS Patients with SCZ (n = 64; mean age = 30.4 years, s.d. = 9.8), BPD (n = 91; mean age 31.0 years, s.d. = 10.2), and CTR (n = 155; mean age = 31.9 years, s.d. = 9.1) who participated in the TOP study (NORMENT, University of Oslo, Norway) were clinically assessed and scanned using a General Electric 3 T MRI system. T1w/T2w-ratio images were computed using an optimized pipeline with intensity normalization and field inhomogeneity correction. Vertex-wise regression models were used to compare groups and examine group × age interactions. In regions showing significant differences, we explored associations with antipsychotic medication use and psychotic symptoms. RESULTS No main effect of diagnosis was found. However, age slopes of the T1w/T2w-ratio differed significantly between SCZ and CTR, predominantly in frontal and temporal lobe regions: Lower T1w/T2w-ratio values with higher age were found in CTR, but not in SCZ. Follow-up analyses revealed a more positive age slope in patients who were using antipsychotics and patients using higher chlorpromazine-equivalent doses. CONCLUSIONS While we found no evidence of reduced intracortical myelin in SCZ or BPD relative to CTR, different regional age trajectories in SCZ may suggest a promyelinating effect of antipsychotic medication.
Collapse
Affiliation(s)
- Kjetil Nordbø Jørgensen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Stener Nerland
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Nora Berz Slapø
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Laura Anne Wortinger
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Claudia Barth
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver M Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik G Jönsson
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ingrid Agartz
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
3
|
Zhou Z, Xu Z, Lai W, Chen X, Zeng L, Qian L, Liu X, Jiang W, Zhang Y, Hou G. Reduced myelin content in bipolar disorder: A study of inhomogeneous magnetization transfer. J Affect Disord 2024; 356:363-370. [PMID: 38615848 DOI: 10.1016/j.jad.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Previous neuroimaging and pathological studies have found myelin-related abnormalities in bipolar disorder (BD), which prompted the use of magnetic resonance (MR) imaging technology sensitive to neuropathological changes to explore its neuropathological basis. We holistically investigated alterations in myelin within BD patients by inhomogeneous magnetization transfer (ihMT), which is sensitive and specific to myelin content. METHODS Thirty-one BD and 42 healthy controls (HC) were involved. Four MR metrics, i.e., ihMT ratio (ihMTR), pseudo-quantitative ihMT (qihMT), magnetization transfer ratio and pseudo-quantitative magnetization transfer (qMT), were compared between groups using analysis methods based on whole-brain voxel-level and white matter regions of interest (ROI), respectively. RESULTS The voxel-wise analysis showed significantly inter-group differences of ihMTR and qihMT in the corpus callosum. The ROI-wise analysis showed that ihMTR, qihMT, and qMT values in BD group were significantly lower than that in HC group in the genu and body of corpus callosum, left anterior limb of the internal capsule, left anterior corona radiate, and bilateral cingulum (p < 0.001). And the qihMT in genu of corpus callosum and right cingulum were negatively correlated with depressive symptoms in BD group. LIMITATIONS This study is based on cross-sectional data and the sample size is limited. CONCLUSION These findings suggest the reduced myelin content of anterior midline structure in the bipolar patients, which might be a critical pathophysiological feature of BD.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Ziyun Xu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Wentao Lai
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Xiaoqiao Chen
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Lin Zeng
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100176, China
| | - Xia Liu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Wentao Jiang
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Yingli Zhang
- Department of Psychology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China.
| | - Gangqiang Hou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China.
| |
Collapse
|
4
|
Tan H, Hubertus S, Thomas S, Lee AM, Gerhardt S, Gerchen MF, Sommer WH, Kiefer F, Schad L, Vollstädt-Klein S. Association between iron accumulation in the dorsal striatum and compulsive drinking in alcohol use disorder. Psychopharmacology (Berl) 2023; 240:249-257. [PMID: 36577866 PMCID: PMC9879829 DOI: 10.1007/s00213-022-06301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
RATIONALE Brain iron accumulation has been observed in neuropsychiatric disorders and shown to be related to neurodegeneration. OBJECTIVES In this study, we used quantitative susceptibility mapping (QSM), an emerging MRI technique developed for quantifying tissue magnetic susceptibility, to examine brain iron accumulation in individuals with alcohol use disorder (AUD) and its relation to compulsive drinking. METHODS Based on our previous projects, QSM was performed as a secondary analysis with gradient echo sequence images, in 186 individuals with AUD and 274 healthy participants. Whole-brain susceptibility values were calculated with morphology-enabled dipole inversion and referenced to the cerebrospinal fluid. Then, the susceptibility maps were compared between AUD individuals and healthy participants. The relationship between drinking patterns and susceptibility was explored. RESULTS Whole-brain analyses showed that the susceptibility in the dorsal striatum (putamen and caudate) among AUD individuals was higher than healthy participants and was positively related to the Obsessive Compulsive Drinking Scale (OCDS) scores and the amount of drinking in the past three months. CONCLUSIONS Increased susceptibility suggests higher iron accumulation in the dorsal striatum in AUD. This surrogate for the brain iron level was linearly associated with the compulsive drinking pattern and the recent amount of drinking, which provides us a new clinical perspective in relation to brain iron accumulation, and also might indicate an association of AUD with neuroinflammation as a consequence of brain iron accumulation. The iron accumulation in the striatum is further relevant for functional imaging studies in AUD by potentially producing signal dropout and artefacts in fMRI images.
Collapse
Affiliation(s)
- Haoye Tan
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Simon Hubertus
- grid.7700.00000 0001 2190 4373Computer Assisted Clinical Medicine, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sebastian Thomas
- grid.7700.00000 0001 2190 4373Computer Assisted Clinical Medicine, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Alycia M. Lee
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sarah Gerhardt
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Martin Fungisai Gerchen
- grid.7700.00000 0001 2190 4373Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.455092.fBernstein Center for Computational Neuroscience Heidelberg/Mannheim, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Department of Psychology, Heidelberg University, 69117 Heidelberg, Germany
| | - Wolfgang H. Sommer
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, 68159 Mannheim, Germany ,Bethania Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany
| | - Falk Kiefer
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Feuerlein Center on Translational Addiction Medicine, Heidelberg University, 69117 Heidelberg, Germany
| | - Lothar Schad
- grid.7700.00000 0001 2190 4373Computer Assisted Clinical Medicine, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany. .,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
5
|
Li C, Chen Y, Wu PY, Wu B, Gong T, Wang H, Chen M. Associations between brain volumetry and relaxometry signatures and the Edmonton Frail Scale in frailty. Quant Imaging Med Surg 2021; 11:2560-2571. [PMID: 34079723 DOI: 10.21037/qims-20-852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Frailty is a geriatric condition characterized by a decreased reserve. The Edmonton frailty scale (EFS) has been widely used as an assessment tool in clinical practice. However, the brain's underlying pathophysiological changes in frailty and their associations with the EFS remain unclear. This study aimed to explore the associations between brain volumetry and relaxometry signatures and the EFS (and each domain score of the EFS) in frailty. Methods A total of 40 non-demented subjects were enrolled in this prospective study. Frailty assessment was performed for each subject according to the EFS. All subjects underwent synthetic magnetic resonance imaging (MRI) (MAGnetic resonance image Compilation, MAGiC) and three-dimensional fast spoiled gradient-recalled echo (3D-FSPGR) T1-weighted structural image acquisitions on a 3.0 T MR scanner. Brain segmentation was performed based on quantitative values obtained from the MAGiC and 3D-FSPGR images. Volumetry and relaxometry of the global brain and regional gray matter (GM) were also obtained. The associations between the total EFS score (and the score of each domain) and the brain's volumetry and relaxometry were investigated by partial correlation while eliminating the effects of age. Multiple comparisons of regional GM volumetry and relaxometry analyses were controlled by false discovery rate (FDR) correction. All data were analyzed using the SPSS 13.0 statistical package (IBM, Armonk, NY, USA) and MATLAB (MathWorks, Natick, MA, USA). Results For global volumetry, significant correlations were found between multiple global volumetry parameters and the EFS, as well as the cognition score, functional independence score, nutrition score, and functional performance score (P<0.05). For global relaxometry, notable positive correlations were found between the T2 values of gray and white matter (WM) and the EFS (r=0.357, P=0.026; r=0.357, P=0.026, respectively). Significant correlations were also identified between the T2 value of GM, the T1, T2, and PD values of WM, and the cognition score (r=0.426, P=0.007; r=0.456, P=0.003; r=0.377, P=0.018; r=0.424, P=0.007, respectively), functional independence score (r=-0.392, P=0.014; r=-0.611, P<0.001; r=-0.367, P=0.022; r=-0.569, P<0.001, respectively), and functional performance score (r=0.337, P=0.036; r=0.472, P=0.002; r=0.354, P=0.027; r=0.376, P=0.018, respectively). For regional GM volumetry, multiple regions showed significant negative correlations with the EFS (P<0.05). Notable negative correlations were found between multiple regional GM volume and the functional independence score (P<0.05). For regional GM relaxometry, the T1 and T2 values of several regions showed significant negative correlations with the functional independence score (T1 value of caudate, r=-0.617, P<0.001; T2 value of insula, r=-0.510, P=0.015; T2 value of caudate, r=-0.633, P<0.001, respectively). No significant correlation was found between the domain scores of the EFS and regional GM PD values (P>0.05). Conclusions In conclusion, brain volumetry and relaxometry signatures showed strong associations with the EFS and some EFS domain scores in frailty. These associations may reveal the possible underlying pathophysiology of the EFS and different domains of the EFS.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhui Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Bing Wu
- GE Healthcare, Beijing, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hua Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Necus J, Smith FE, Thelwall PE, Flowers CJ, Sinha N, Taylor PN, Blamire AM, Wang Y, Cousins DA. Quantification of brain proton longitudinal relaxation (T 1 ) in lithium-treated and lithium-naïve patients with bipolar disorder in comparison to healthy controls. Bipolar Disord 2021; 23:41-48. [PMID: 31755171 PMCID: PMC7891392 DOI: 10.1111/bdi.12878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Proton longitudinal relaxation (T1 ) is a quantitative MRI-derived tissue parameter sensitive to myelin, macromolecular, iron and water content. There is some evidence to suggest that cortical T1 is elevated in bipolar disorder and that lithium administration reduces cortical T1 . However, T1 has not yet been quantified in separate groups containing lithium-treated patients, lithium-naïve patients, and matched healthy controls. METHODS Euthymic patients with bipolar disorder receiving lithium (n = 18, BDL) and those on other medications but naïve to lithium (n = 20, BDC) underwent quantitative T1 mapping alongside healthy controls (n = 18, HC). T1 was compared between groups within the cortex, white matter and subcortical structures using regions of interest (ROI) derived from the Desikan-Killiany atlas. Effect sizes for each ROI were computed for BDC vs BDL groups and Bipolar Disorder vs HC groups. RESULTS No significant differences in T1 were identified between BDL and BDC groups when corrected for multiple comparisons. Patients with bipolar disorder had significantly higher mean T1 in a range of ROIs compared to healthy controls, including bilateral motor, somatosensory and superior temporal regions, subcortical structures and white matter. CONCLUSIONS The higher T1 values observed in the patients with bipolar disorder may reflect abnormal tissue microstructure. Whilst the precise mechanism remains unknown, these findings may have a basis in differences in myelination, macromolecular content, iron and water content between patients and controls.
Collapse
Affiliation(s)
- Joe Necus
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK,Interdisciplinary Computing and Complex BioSystems (ICOS)School of Computing ScienceNewcastle UniversityNewcastle upon TyneUK
| | - Fiona Elizabeth Smith
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK,Newcastle Magnetic Resonance CentreNewcastle UniversityNewcastle upon TyneUK
| | - Peter Edward Thelwall
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK,Newcastle Magnetic Resonance CentreNewcastle UniversityNewcastle upon TyneUK
| | - Carly Jay Flowers
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Nishant Sinha
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK,Interdisciplinary Computing and Complex BioSystems (ICOS)School of Computing ScienceNewcastle UniversityNewcastle upon TyneUK
| | - Peter Neal Taylor
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK,Interdisciplinary Computing and Complex BioSystems (ICOS)School of Computing ScienceNewcastle UniversityNewcastle upon TyneUK,Institute of NeurologyUniversity College LondonLondonUK
| | - Andrew Matthew Blamire
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK,Newcastle Magnetic Resonance CentreNewcastle UniversityNewcastle upon TyneUK
| | - Yujiang Wang
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK,Interdisciplinary Computing and Complex BioSystems (ICOS)School of Computing ScienceNewcastle UniversityNewcastle upon TyneUK,Institute of NeurologyUniversity College LondonLondonUK
| | - David Andrew Cousins
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK,Northumberland Tyne and Wear NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|