1
|
Toivonen J, Fortelius M, Žliobaitė I. Do species factories exist? Detecting exceptional patterns of evolution in the mammalian fossil record. Proc Biol Sci 2022; 289:20212294. [PMID: 35382595 PMCID: PMC8984811 DOI: 10.1098/rspb.2021.2294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A species factory refers to the source that gives rise to an exceptionally large number of species. However, what is it exactly: a place, a time or a combination of places, times and environmental conditions, remains unclear. Here we search for species factories computationally, for which we develop statistical approaches to detect origination, extinction and sorting hotspots in space and time in the fossil record. Using data on European Late Cenozoic mammals, we analyse where, how and how often species factories occur, and how they potentially relate to the dynamics of environmental conditions. We find that in the Early Miocene origination hotspots tend to be located in areas with relatively low estimated net primary productivity. Our pilot study shows that species first occurring in origination hotspots tend to have a longer average longevity and a larger geographical range than other species, thus emphasizing the evolutionary importance of the species factories.
Collapse
Affiliation(s)
- Jaakko Toivonen
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Mikael Fortelius
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,The Finnish Museum of Natural History, Helsinki, Finland
| | - Indrė Žliobaitė
- Department of Computer Science, University of Helsinki, Helsinki, Finland.,The Finnish Museum of Natural History, Helsinki, Finland
| |
Collapse
|
2
|
|
3
|
Melchionna M, Mondanaro A, Serio C, Castiglione S, Di Febbraro M, Rook L, Diniz-Filho JAF, Manzi G, Profico A, Sansalone G, Raia P. Macroevolutionary trends of brain mass in Primates. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
A distinctive trait in primate evolution is the expansion in brain mass. The potential drivers of this trend and how and whether encephalization influenced diversification dynamics in this group are hotly debated. We assembled a phylogeny accounting for 317 primate species, including both extant and extinct taxa, to identify macroevolutionary trends in brain mass evolution. Our findings show that Primates as a whole follow a macroevolutionary trend for an increase in body mass, relative brain mass and speciation rate over time. Although the trend for increased encephalization (brain mass) applies to all Primates, hominins stand out for their distinctly higher rates. Within hominins, this unique trend applies linearly over time and starts with Australopithecus africanus. The increases in both speciation rate and encephalization begin in the Oligocene, suggesting the two variables are causally associated. The substitution of early, stem Primates belonging to plesiadapiforms with crown Primates seems to be responsible for these macroevolutionary trends. However, our findings also suggest that cognitive capacities favoured speciation in hominins.
Collapse
Affiliation(s)
- M Melchionna
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| | - A Mondanaro
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
- Department of Earth Sciences, University of Florence, Italy
| | - C Serio
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| | - S Castiglione
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| | - M Di Febbraro
- Dipartimento di Bioscienze e Territorio, University of Molise, C. da Fonte Lappone, 15, 86090 Pesche, IS, Italy
| | - L Rook
- Department of Earth Sciences, University of Florence, Italy
| | - J A F Diniz-Filho
- Departamento de Ecologia, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - G Manzi
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - A Profico
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - G Sansalone
- Department of Environmental and Rural Sciences, FEARlab, University of New England, Armidale, 2351, NSW, Australia
| | - P Raia
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| |
Collapse
|
4
|
Castiglione S, Mondanaro A, Melchionna M, Serio C, Di Febbraro M, Carotenuto F, Raia P. Diversification Rates and the Evolution of Species Range Size Frequency Distribution. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Jablonski D. Approaches to Macroevolution: 2. Sorting of Variation, Some Overarching Issues, and General Conclusions. Evol Biol 2017; 44:451-475. [PMID: 29142334 PMCID: PMC5661022 DOI: 10.1007/s11692-017-9434-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Approaches to macroevolution require integration of its two fundamental components, within a hierarchical framework. Following a companion paper on the origin of variation, I here discuss sorting within an evolutionary hierarchy. Species sorting-sometimes termed species selection in the broad sense, meaning differential origination and extinction owing to intrinsic biological properties-can be split into strict-sense species selection, in which rate differentials are governed by emergent, species-level traits such as geographic range size, and effect macroevolution, in which rates are governed by organism-level traits such as body size; both processes can create hitchhiking effects, indirectly causing the proliferation or decline of other traits. Several methods can operationalize the concept of emergence, so that rigorous separation of these processes is increasingly feasible. A macroevolutionary tradeoff, underlain by the intrinsic traits that influence evolutionary dynamics, causes speciation and extinction rates to covary in many clades, resulting in evolutionary volatility of some clades and more subdued behavior of others; the few clades that break the tradeoff can achieve especially prolific diversification. In addition to intrinsic biological traits at multiple levels, extrinsic events can drive the waxing and waning of clades, and the interaction of traits and events are difficult but important to disentangle. Evolutionary trends can arise in many ways, and at any hierarchical level; descriptive models can be fitted to clade trajectories in phenotypic or functional spaces, but they may not be diagnostic regarding processes, and close attention must be paid to both leading and trailing edges of apparent trends. Biotic interactions can have negative or positive effects on taxonomic diversity within a clade, but cannot be readily extrapolated from the nature of such interactions at the organismic level. The relationships among macroevolutionary currencies through time (taxonomic richness, morphologic disparity, functional variety) are crucial for understanding the nature of evolutionary diversification. A novel approach to diversity-disparity analysis shows that taxonomic diversifications can lag behind, occur in concert with, or precede, increases in disparity. Some overarching issues relating to both the origin and sorting of clades and phenotypes include the macroevolutionary role of mass extinctions, the potential differences between plant and animal macroevolution, whether macroevolutionary processes have changed through geologic time, and the growing human impact on present-day macroevolution. Many challenges remain, but progress is being made on two of the key ones: (a) the integration of variation-generating mechanisms and the multilevel sorting processes that act on that variation, and (b) the integration of paleontological and neontological approaches to historical biology.
Collapse
Affiliation(s)
- David Jablonski
- Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 USA
| |
Collapse
|
6
|
Pires MM, Silvestro D, Quental TB. Interactions within and between clades shaped the diversification of terrestrial carnivores. Evolution 2017; 71:1855-1864. [PMID: 28543226 DOI: 10.1111/evo.13269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 05/02/2017] [Indexed: 11/29/2022]
Abstract
A longstanding debate in evolutionary biology and paleontology is whether ecological interactions such as competition impose diversity dependence on speciation and extinction rates. Here, we analyze the fossil record of terrestrial mammalian carnivores in North America and Eurasia using a Bayesian framework to assess whether their diversity dynamics were affected by diversity dependence within and between families (12 in Eurasia, 10 in North America). We found eight instances of within-clade diversity dependence suppressing speciation rates and detected between-clade effects increasing extinction rates in six instances. Diversity dependence often involved lineages that migrated between continents and we found that speciation was more responsive to diversity changes within the clade, whereas extinction responded to diversity of taxa in other clades. The analysis of the fossil record of Carnivora suggests that interactions within and between clades are associated with different speciation and extinction regimes, opening room for a broader theory of diversity dependence.
Collapse
Affiliation(s)
- Mathias M Pires
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 11294, 05422-970, São Paulo, Brazil
| | - Daniele Silvestro
- Department of Evolution and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, 413 19, Gothenburg, Sweden
| | - Tiago B Quental
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 11294, 05422-970, São Paulo, Brazil
| |
Collapse
|
7
|
Didier G, Fau M, Laurin M. Likelihood of Tree Topologies with Fossils and Diversification Rate Estimation. Syst Biol 2017; 66:964-987. [DOI: 10.1093/sysbio/syx045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/05/2017] [Indexed: 11/15/2022] Open
|
8
|
Morphological change in cranial shape following the transition to agriculture across western Eurasia. Sci Rep 2016; 6:33316. [PMID: 27622425 PMCID: PMC5020731 DOI: 10.1038/srep33316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/23/2016] [Indexed: 01/06/2023] Open
Abstract
The Neolithic transition brought about fundamental social, dietary and behavioural changes in human populations, which, in turn, impacted skeletal morphology. Crania are shaped through diverse genetic, ontogenetic and environmental factors, reflecting various elements of an individual’s life. To determine the transition’s effect on cranial morphology, we investigated its potential impact on the face and vault, two elements potentially responding to different influences. Three datasets from geographically distant regions (Ukraine, Iberia, and the Levant plus Anatolia) were analysed. Craniometric measurements were used to compare the morphology of pre-transition populations with that of agricultural populations. The Neolithic transition corresponds to a statistically significant increase only in cranial breadth of the Ukrainian vaults, while facial morphology shows no consistent transformations, despite expected changes related to the modification of masticatory behaviour. The broadening of Ukrainian vaults may be attributable to dietary and/or social changes. However, the lack of change observed in the other geographical regions and the lack of consistent change in facial morphology are surprising. Although the transition from foraging to farming is a process that took place repeatedly across the globe, different characteristics of transitions seem responsible for idiosyncratic responses in cranial morphology.
Collapse
|
9
|
Goswami A, Mannion PD, Benton MJ. Radiation and extinction: investigating clade dynamics in deep time. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Anjali Goswami
- Department of Genetics, Evolution & Environment; University College London; Darwin Building Gower Street London WC1E 6BT UK
- Department of Earth Sciences; University College London; Gower Street London WC1E 6BT UK
| | - Philip D. Mannion
- Department of Earth Science and Engineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Michael J. Benton
- School of Earth Sciences; University of Bristol; Wills Memorial Building Queens Road Clifton BS8 1RJ UK
| |
Collapse
|