1
|
Akera T. Tubulin post-translational modifications in meiosis. Semin Cell Dev Biol 2023; 137:38-45. [PMID: 34836784 PMCID: PMC9124733 DOI: 10.1016/j.semcdb.2021.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022]
Abstract
Haploid gametes are produced from diploid parents through meiosis, a process inherent to all sexually reproducing eukaryotes. Faithful chromosome segregation in meiosis is essential for reproductive success, although it is less clear how the meiotic spindle achieves this compared to the mitotic spindle. It is becoming increasingly clear that tubulin post-translational modifications (PTMs) play critical roles in regulating microtubule functions in many biological processes, and meiosis is no exception. Here, I review recent advances in the understanding of tubulin PTMs in meiotic spindles, especially focusing on their roles in spindle integrity, oocyte aging, and non-Mendelian transmission.
Collapse
Affiliation(s)
- Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda 20892, MD, USA.
| |
Collapse
|
2
|
Akera T, Chmátal L, Trimm E, Yang K, Aonbangkhen C, Chenoweth DM, Janke C, Schultz RM, Lampson MA. Spindle asymmetry drives non-Mendelian chromosome segregation. Science 2018; 358:668-672. [PMID: 29097549 DOI: 10.1126/science.aan0092] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/10/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Abstract
Genetic elements compete for transmission through meiosis, when haploid gametes are created from a diploid parent. Selfish elements can enhance their transmission through a process known as meiotic drive. In female meiosis, selfish elements drive by preferentially attaching to the egg side of the spindle. This implies some asymmetry between the two sides of the spindle, but the molecular mechanisms underlying spindle asymmetry are unknown. Here we found that CDC42 signaling from the cell cortex regulated microtubule tyrosination to induce spindle asymmetry and that non-Mendelian segregation depended on this asymmetry. Cortical CDC42 depends on polarization directed by chromosomes, which are positioned near the cortex to allow the asymmetric cell division. Thus, selfish meiotic drivers exploit the asymmetry inherent in female meiosis to bias their transmission.
Collapse
Affiliation(s)
- Takashi Akera
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukáš Chmátal
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karren Yang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chanat Aonbangkhen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Chenoweth
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carsten Janke
- Institut Curie, Paris Sciences & Lettres (PSL) Research University, CNRS UMR3348, Centre Universitaire, Bâtiment 110, F-91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Centre Universitaire, Bâtiment 110, F-91405 Orsay, France
| | - Richard M Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Lampson MA, Black BE. Cellular and Molecular Mechanisms of Centromere Drive. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:249-257. [PMID: 29440567 PMCID: PMC6041145 DOI: 10.1101/sqb.2017.82.034298] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The asymmetric outcome of female meiosis I, whereby an entire set of chromosomes are discarded into a polar body, presents an opportunity for selfish genetic elements to cheat the process and disproportionately segregate to the egg. Centromeres, the chromosomal loci that connect to spindle microtubules, could potentially act as selfish elements and "drive" in meiosis. We review the current understanding of the genetic and epigenetic contributions to centromere identity and describe recent progress in a powerful model system to study centromere drive in mice. The progress includes mechanistic findings regarding two main requirements for a centromere to exploit the asymmetric outcome of female meiosis. The first is an asymmetry between centromeres of homologous chromosomes, and we found this is accomplished through massive changes in the abundance of the repetitive DNA underlying centromeric chromatin. The second requirement is an asymmetry in the meiotic spindle, which is achieved through signaling from the oocyte cortex that leads to asymmetry in a posttranslational modification of tubulin, tyrosination. Together, these two asymmetries culminate in the biased segregation of expanded centromeres to the egg, and we describe a mechanistic framework to understand this process.
Collapse
Affiliation(s)
- Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| |
Collapse
|