1
|
Park S, Thomson P, Kiar G, Castellanos FX, Milham MP, Bernhardt B, Di Martino A. Delineating a Pathway for the Discovery of Functional Connectome Biomarkers of Autism. ADVANCES IN NEUROBIOLOGY 2024; 40:511-544. [PMID: 39562456 DOI: 10.1007/978-3-031-69491-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The promise of individually tailored care for autism has driven efforts to establish biomarkers. This chapter appraises the state of precision-medicine research focused on biomarkers based on the functional brain connectome. This work is grounded on abundant evidence supporting the brain dysconnection model of autism and the advantages of resting-state functional MRI (R-fMRI) for studying the brain in vivo. After considering biomarker requirements of consistency and clinical relevance, we provide a scoping review of R-fMRI studies of individual prediction in autism. In the past 10 years, responding to the availability of open data through the Autism Brain Imaging Data Exchange, machine learning studies have surged. Nearly all have focused on diagnostic label classification. These efforts have shown that autism prediction is feasible using functional connectome markers, with accuracy reported well above chance. In parallel, emerging approaches more directly addressing autism heterogeneity are paving the way for much-needed biomarkers of longitudinal outcome and treatment response. We conclude with key challenges to be addressed by the next generation of studies.
Collapse
Affiliation(s)
- Shinwon Park
- Child Mind Institute, Autism Center, New York, NY, USA
| | | | - Gregory Kiar
- Child Mind Institute, Center for Data Analytics, Innovation, and Rigor, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Michael P Milham
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, Center for the Developing Brain, New York, NY, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
2
|
Xiao Q, Xu H, Chu Z, Feng Q, Zhang Y. Margin-Maximized Norm-Mixed Representation Learning for Autism Spectrum Disorder Diagnosis With Multi-Level Flux Features. IEEE Trans Biomed Eng 2024; 71:183-194. [PMID: 37432838 DOI: 10.1109/tbme.2023.3294223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Early diagnosis and timely intervention are significantly beneficial to patients with autism spectrum disorder (ASD). Although structural magnetic resonance imaging (sMRI) has become an essential tool to facilitate the diagnosis of ASD, these sMRI-based approaches still have the following issues. The heterogeneity and subtle anatomical changes place higher demands for effective feature descriptors. Additionally, the original features are usually high-dimensional, while most existing methods prefer to select feature subsets in the original space, in which noises and outliers may hinder the discriminative ability of selected features. In this article, we propose a margin-maximized norm-mixed representation learning framework for ASD diagnosis with multi-level flux features extracted from sMRI. Specifically, a flux feature descriptor is devised to quantify comprehensive gradient information of brain structures on both local and global levels. For the multi-level flux features, we learn latent representations in an assumed low-dimensional space, in which a self-representation term is incorporated to characterize the relationships among features. We also introduce mixed norms to finely select original flux features for the construction of latent representations while preserving the low-rankness of latent representations. Furthermore, a margin maximization strategy is applied to enlarge the inter-class distance of samples, thereby increasing the discriminative ability of latent representations. The extensive experiments on several datasets show that our proposed method can achieve promising classification performance (the average area under curve, accuracy, specificity, and sensitivity on the studied ASD datasets are 0.907, 0.896, 0.892, and 0.908, respectively) and also find potential biomarkers for ASD diagnosis.
Collapse
|
3
|
Zhang J, Siegle GJ, Sun T, D’andrea W, Krafty RT. Interpretable principal component analysis for multilevel multivariate functional data. Biostatistics 2023; 24:227-243. [PMID: 34545394 PMCID: PMC10102903 DOI: 10.1093/biostatistics/kxab018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 11/14/2022] Open
Abstract
Many studies collect functional data from multiple subjects that have both multilevel and multivariate structures. An example of such data comes from popular neuroscience experiments where participants' brain activity is recorded using modalities such as electroencephalography and summarized as power within multiple time-varying frequency bands within multiple electrodes, or brain regions. Summarizing the joint variation across multiple frequency bands for both whole-brain variability between subjects, as well as location-variation within subjects, can help to explain neural reactions to stimuli. This article introduces a novel approach to conducting interpretable principal components analysis on multilevel multivariate functional data that decomposes total variation into subject-level and replicate-within-subject-level (i.e., electrode-level) variation and provides interpretable components that can be both sparse among variates (e.g., frequency bands) and have localized support over time within each frequency band. Smoothness is achieved through a roughness penalty, while sparsity and localization of components are achieved by solving an innovative rank-one based convex optimization problem with block Frobenius and matrix $L_1$-norm-based penalties. The method is used to analyze data from a study to better understand reactions to emotional information in individuals with histories of trauma and the symptom of dissociation, revealing new neurophysiological insights into how subject- and electrode-level brain activity are associated with these phenomena. Supplementary materials for this article are available online.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biostatistics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA, 15213, USA
| | - Tao Sun
- Center for Applied Statistics, School of Statistics, Renmin University of China, 59 Zhongguancun Street, Beijing, 100872, China
| | - Wendy D’andrea
- Department of Psychology, New School for Social Research, 80 Fifth Avenue, New York, NY, 10011, USA
| | - Robert T Krafty
- Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Chen S, He K, He S, Ni Y, Wong RKW. Bayesian Nonlinear Tensor Regression with Functional Fused Elastic Net Prior. Technometrics 2023. [DOI: 10.1080/00401706.2023.2197471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
5
|
Jing M, Ng KY, Namee BM, Biglarbeigi P, Brisk R, Bond R, Finlay D, McLaughlin J. COVID-19 modelling by time-varying transmission rate associated with mobility trend of driving via Apple Maps. J Biomed Inform 2021; 122:103905. [PMID: 34481056 PMCID: PMC8410221 DOI: 10.1016/j.jbi.2021.103905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
Compartment-based infectious disease models that consider the transmission rate (or contact rate) as a constant during the course of an epidemic can be limiting regarding effective capture of the dynamics of infectious disease. This study proposed a novel approach based on a dynamic time-varying transmission rate with a control rate governing the speed of disease spread, which may be associated with the information related to infectious disease intervention. Integration of multiple sources of data with disease modelling has the potential to improve modelling performance. Taking the global mobility trend of vehicle driving available via Apple Maps as an example, this study explored different ways of processing the mobility trend data and investigated their relationship with the control rate. The proposed method was evaluated based on COVID-19 data from six European countries. The results suggest that the proposed model with dynamic transmission rate improved the performance of model fitting and forecasting during the early stage of the pandemic. Positive correlation has been found between the average daily change of mobility trend and control rate. The results encourage further development for incorporation of multiple resources into infectious disease modelling in the future.
Collapse
Affiliation(s)
- Min Jing
- School of Engineering, Ulster University, United Kingdom.
| | - Kok Yew Ng
- School of Engineering, Ulster University, United Kingdom
| | - Brian Mac Namee
- School of Computer Science, University College Dublin, Ireland
| | | | - Rob Brisk
- School of Engineering, Ulster University, United Kingdom; Southern Health and Social Care Trust, Northern Ireland, United Kingdom
| | - Raymond Bond
- School of Computing, Ulster University, United Kingdom
| | - Dewar Finlay
- School of Engineering, Ulster University, United Kingdom
| | | |
Collapse
|
6
|
Ball G, Kelly CE, Beare R, Seal ML. Individual variation underlying brain age estimates in typical development. Neuroimage 2021; 235:118036. [PMID: 33838267 DOI: 10.1016/j.neuroimage.2021.118036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Typical brain development follows a protracted trajectory throughout childhood and adolescence. Deviations from typical growth trajectories have been implicated in neurodevelopmental and psychiatric disorders. Recently, the use of machine learning algorithms to model age as a function of structural or functional brain properties has been used to examine advanced or delayed brain maturation in healthy and clinical populations. Termed 'brain age', this approach often relies on complex, nonlinear models that can be difficult to interpret. In this study, we use model explanation methods to examine the cortical features that contribute to brain age modelling on an individual basis. In a large cohort of n = 768 typically-developing children (aged 3-21 years), we build models of brain development using three different machine learning approaches. We employ SHAP, a model-agnostic technique to identify sample-specific feature importance, to identify regional cortical metrics that explain errors in brain age prediction. We find that, on average, brain age prediction and the cortical features that explain model predictions are consistent across model types and reflect previously reported patterns of regions brain development. However, while several regions are found to contribute to brain age prediction error, we find little spatial correspondence between individual estimates of feature importance, even when matched for age, sex and brain age prediction error. We also find no association between brain age error and cognitive performance in this typically-developing sample. Overall, this study shows that, while brain age estimates based on cortical development are relatively robust and consistent across model types and preprocessing strategies, significant between-subject variation exists in the features that explain erroneous brain age predictions on an individual level.
Collapse
Affiliation(s)
- Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia; Department of Paediatrics, University of Melbourne, Australia.
| | - Claire E Kelly
- Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Australia
| | - Richard Beare
- Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia; Department of Paediatrics, University of Melbourne, Australia
| |
Collapse
|
7
|
Graña M, Silva M. Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data. Int J Neural Syst 2021; 31:2150009. [PMID: 33472548 DOI: 10.1142/s012906572150009x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction, and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this paper, we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines. Specifically, we consider six brain parcellation definitions, five methods for functional connectivity matrix construction, six feature extraction/selection approaches, and nine classifier building algorithms. We report the prediction performance sensitivity to each of these choices, as well as the best results that are comparable with the state of the art.
Collapse
Affiliation(s)
- Manuel Graña
- Computational Intelligence Group, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Moises Silva
- Universidad Mayor de San Andres, La Paz, Bolivia
| |
Collapse
|
8
|
|