1
|
del Río‐Sancho S, Christen‐Zaech S, Alvarez Martinez D, Pünchera J, Merat R, Laubach HJ. Comparing Line-Field Confocal Optical Coherence Tomography and Reflectance Confocal Microscopy on the In Vivo Healing Process of Lesions Induced by Fractional Photothermolysis. Lasers Surg Med 2025; 57:121-129. [PMID: 39245876 PMCID: PMC11776447 DOI: 10.1002/lsm.23841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The advent of ablative fractional photothermolysis has revolutionized laser dermatology by providing a method to produce well-standardized, precise, and repeatable microscopic lesions. These wounds typically heal within 1-3 weeks, depending on the body site, with a minimal risk of permanent scarring. This positions ablative fractional photothermolysis as an exemplary in vivo model for studying the skin's wound healing processes. OBJECTIVES This study aims to evaluate and compare the effectiveness of two noninvasive imaging techniques, reflectance confocal microscopy (RCM) and line-field confocal optical coherence tomography (LC-OCT), in assessing skin wound healing following microscopic injuries induced by ablative fractional photothermolysis. METHODS The forearms of participating volunteers were treated and ablated with a CO2-Laser in a fractional pattern using varying power settings (2.5-10 mJ/MTZ). In vivo RCM and LC-OCT images were obtained at predefined time intervals post-laser treatment, ranging from 6 h to 14 days. RESULTS Vertical visualization of the lesions through both imaging modalities revealed a healing process characterized by the upward and outward movement of microscopic epidermal necrotic debris, thereby reducing the depth of the injury while forming an external crust. LC-OCT imaging demonstrated more comprehensive results with fewer movement artifacts. Conversely, horizontal visualization with both techniques highlighted a gathering of keratinocytes around the wounds, indicating the initiation of the regenerative process. RCM provided superior image clarity in this horizontal plane. CONCLUSIONS RCM and LC-OCT offer valuable and complementary noninvasive alternatives to conventional biopsy methods for the assessment and characterization of the skin's wound healing process post-ablative fractional photothermolysis. These findings underscore the potential of such imaging techniques in enhancing our understanding of the wound healing process. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05614557.
Collapse
Affiliation(s)
- Sergio del Río‐Sancho
- Laser Dermatology Consultation, Division of Dermatology and VenereologyGeneva University HospitalsGenevaSwitzerland
- Pediatric Dermatology Unit, Departments of Dermatology & Venereology, University Hospital LausanneUniversity of LausanneLausanneSwitzerland
| | - Stephanie Christen‐Zaech
- Pediatric Dermatology Unit, Departments of Dermatology & Venereology, University Hospital LausanneUniversity of LausanneLausanneSwitzerland
| | - David Alvarez Martinez
- Laser Dermatology Consultation, Division of Dermatology and VenereologyGeneva University HospitalsGenevaSwitzerland
| | - Jöri Pünchera
- Laser Dermatology Consultation, Division of Dermatology and VenereologyGeneva University HospitalsGenevaSwitzerland
| | - Rastine Merat
- Dermato‐Oncology Unit, Division of Dermatology and VenereologyGeneva University HospitalsGenevaSwitzerland
| | - Hans Joachim Laubach
- Laser Dermatology Consultation, Division of Dermatology and VenereologyGeneva University HospitalsGenevaSwitzerland
| |
Collapse
|
2
|
Kim H, Kang D, Seong D, Saleah SA, Luna JA, Kim Y, Kim H, Han S, Jeon M, Kim J. Skin pore imaging using spectral-domain optical coherence tomography: a case report. Biomed Eng Lett 2023; 13:729-737. [PMID: 37872989 PMCID: PMC10590360 DOI: 10.1007/s13534-023-00290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 10/25/2023] Open
Abstract
Sebum is an important component of the skin that has attracted attention in many fields, including dermatology and cosmetics. Pore expansion due to sebum on the skin can lead to various problems. Therefore, it is necessary to analyze the morphological characteristics of sebum. In this study, we used optical coherence tomography (OCT) to evaluate facial sebum areas. We obtained the OCT maximum amplitude projection (MAP) image and a cross-sectional image of skin pores in the facial area. Subsequently, we detected the sebum in skin pores using the detection algorithm of the ImageJ software to quantitatively determine the size of randomly selected pores in the proposed MAP images. Additionally, the pore size was analyzed by acquiring images before and after facial sebum extraction. According to our research, facial sebum can be morphologically described using the OCT system. Since OCT imaging enables specific analysis of skin parameters, including pores and sebum, skin analysis employing OCT could be an effective method for further research.
Collapse
Affiliation(s)
- Hyunmo Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Dongwan Kang
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Sm Abu Saleah
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jannat Amrin Luna
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Yoonseok Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Hayoung Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Sangyeob Han
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
- School of Medicine, Institute of Biomedical Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
3
|
Wang Y, Freeman A, Ajjan R, Del Galdo F, Tiganescu A. Automated quantification of 3D wound morphology by machine learning and optical coherence tomography in type 2 diabetes. SKIN HEALTH AND DISEASE 2023; 3:e203. [PMID: 37275432 PMCID: PMC10233090 DOI: 10.1002/ski2.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 08/17/2023]
Abstract
Background Driven by increased prevalence of type 2 diabetes and ageing populations, wounds affect millions of people each year, but monitoring and treatment remain limited. Glucocorticoid (stress hormones) activation by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) also impairs healing. We recently reported that 11β-HSD1 inhibition with oral AZD4017 improves acute wound healing by manual 2D optical coherence tomography (OCT), although this method is subjective and labour-intensive. Objectives Here, we aimed to develop an automated method of 3D OCT for rapid identification and quantification of multiple wound morphologies. Methods We analysed 204 3D OCT scans of 3 mm punch biopsies representing 24 480 2D wound image frames. A u-net method was used for image segmentation into 4 key wound morphologies: early granulation tissue, late granulation tissue, neo-epidermis, and blood clot. U-net training was conducted with 0.2% of available frames, with a mini-batch accuracy of 86%. The trained model was applied to compare segment area (per frame) and volume (per scan) at days 2 and 7 post-wounding and in AZD4017 compared to placebo. Results Automated OCT distinguished wound tissue morphologies, quantifying their volumetric transition during healing, and correlating with corresponding manual measurements. Further, AZD4017 improved epidermal re-epithelialisation (by manual OCT) with a corresponding trend towards increased neo-epidermis volume (by automated OCT). Conclusion Machine learning and OCT can quantify wound healing for automated, non-invasive monitoring in real-time. This sensitive and reproducible new approach offers a step-change in wound healing research, paving the way for further development in chronic wounds.
Collapse
Affiliation(s)
- Yinhai Wang
- Data Sciences & Quantitative BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Adrian Freeman
- Emerging Innovations UnitDiscovery SciencesBioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Ramzi Ajjan
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Francesco Del Galdo
- NIHR Biomedical Research CentreLeeds Teaching Hospitals NHS TrustLeedsUK
- Leeds Institute of Rheumatic and Musculoskeletal MedicineUniversity of LeedsLeedsUK
| | - Ana Tiganescu
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
4
|
Ten Voorde W, Saghari M, Boltjes J, de Kam ML, Zhuparris A, Feiss G, Buters TP, Prens EP, Damman J, Niemeyer-van der Kolk T, Moerland M, Burggraaf J, van Doorn MBA, Rissmann R. A multimodal, comprehensive characterization of a cutaneous wound model in healthy volunteers. Exp Dermatol 2023. [PMID: 37051698 DOI: 10.1111/exd.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Development of pharmacological interventions for wound treatment is challenging due to both poorly understood wound healing mechanisms and heterogeneous patient populations. A standardized and well-characterized wound healing model in healthy volunteers is needed to aid in-depth pharmacodynamic and efficacy assessments of novel compounds. The current study aims to objectively and comprehensively characterize skin punch biopsy-induced wounds in healthy volunteers with an integrated, multimodal test battery. Eighteen (18) healthy male and female volunteers received three biopsies on the lower back, which were left to heal without intervention. The wound healing process was characterized using a battery of multimodal, non-invasive methods as well as histology and qPCR analysis in re-excised skin punch biopsies. Biophysical and clinical imaging read-outs returned to baseline values in 28 days. Optical coherence tomography detected cutaneous differences throughout the wound healing progression. qPCR analysis showed involvement of proteins, quantified as mRNA fold increase, in one or more healing phases. All modalities used in the study were able to detect differences over time. Using multidimensional data visualization, we were able to create a distinction between wound healing phases. Clinical and histopathological scoring were concordant with non-invasive imaging read-outs. This well-characterized wound healing model in healthy volunteers will be a valuable tool for the standardized testing of novel wound healing treatments.
Collapse
Affiliation(s)
- Wouter Ten Voorde
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Mahdi Saghari
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Jiry Boltjes
- Centre for Human Drug Research, Leiden, the Netherlands
| | | | | | - Gary Feiss
- Cutanea Life Sciences, Wayne, Pennsylvania, USA
| | - Thomas P Buters
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Errol P Prens
- Department of Dermatology Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Jeffrey Damman
- Department of Pathology Erasmus Medical Centre, Rotterdam, the Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Robert Rissmann
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
5
|
Bromberger L, Heise B, Felbermayer K, Leiss-Holzinger E, Ilicic K, Schmid TE, Bergmayr A, Etzelstorfer T, Geinitz H. Radiation-induced alterations in multi-layered, in-vitro skin models detected by optical coherence tomography and histological methods. PLoS One 2023; 18:e0281662. [PMID: 36862637 PMCID: PMC9980765 DOI: 10.1371/journal.pone.0281662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Inflammatory skin reactions and skin alterations are still a potential side effect in radiation therapy (RT), which also need attention for patients' health care. METHOD In a pre-clinical study we consider alterations in irradiated in-vitro skin models of epidermal and dermal layers. Typical dose regimes in radiation therapy are applied for irradiation. For non-invasive imaging and characterization optical coherence tomography (OCT) is used. Histological staining method is additionally applied for comparison and discussion. RESULTS Structural features, such as keratinization, modifications in epidermal cell layer thickness and disorder in the layering-as indications for reactions to ionizing radiation and aging-could be observed by means of OCT and confirmed by histology. We were able to recognize known RT induced changes such as hyper-keratosis, acantholysis, and epidermal hyperplasia as well as disruption and/or demarcation of the dermo-epidermal junction. CONCLUSION The results may pave the way for OCT to be considered as a possible adjunctive tool to detect and monitor early skin inflammation and side effects of radiotherapy, thus supporting patient healthcare in the future.
Collapse
Affiliation(s)
- Luisa Bromberger
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Bettina Heise
- Institute for Mathematical Methods in Medicine and Data Based Modelling, Johannes Kepler University (JKU), Linz, Austria
- Research Center for Non-Destructive Testing (RECENDT)-GmbH, Linz, Austria
- * E-mail:
| | | | | | - Katarina Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Thomas Ernst Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Alexandra Bergmayr
- Department of Pathology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Tanja Etzelstorfer
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Hans Geinitz
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| |
Collapse
|
6
|
Advances in Medical Imaging for Wound Repair and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
7
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ajjan RA, Hensor EMA, Del Galdo F, Shams K, Abbas A, Fairclough RJ, Webber L, Pegg L, Freeman A, Taylor AE, Arlt W, Morgan AW, Tahrani AA, Stewart PM, Russell DA, Tiganescu A. Oral 11β-HSD1 inhibitor AZD4017 improves wound healing and skin integrity in adults with type 2 diabetes mellitus: a pilot randomized controlled trial. Eur J Endocrinol 2022; 186:441-455. [PMID: 35113805 PMCID: PMC8942338 DOI: 10.1530/eje-21-1197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Chronic wounds (e.g. diabetic foot ulcers) reduce the quality of life, yet treatments remain limited. Glucocorticoids (activated by the enzyme 11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1) impair wound healing. OBJECTIVES Efficacy, safety, and feasibility of 11β-HSD1 inhibition for skin function and wound healing. DESIGN Investigator-initiated, double-blind, randomized, placebo-controlled, parallel-group phase 2b pilot trial. METHODS Single-center secondary care setting. Adults with type 2 diabetes mellitus without foot ulcers were administered 400 mg oral 11β-HSD1 inhibitor AZD4017 (n = 14) or placebo (n = 14) bi-daily for 35 days. Participants underwent 3-mm full-thickness punch skin biopsies at baseline and on day 28; wound healing was monitored after 2 and 7 days. Computer-generated 1:1 randomization was pharmacy-administered. Analysis was descriptive and focused on CI estimation. Of the 36 participants screened, 28 were randomized. RESULTS Exploratory proof-of-concept efficacy analysis suggested AZD4017 did not inhibit 24-h ex vivoskin 11β-HSD1 activity (primary outcome; difference in percentage conversion per 24 h 1.1% (90% CI: -3.4 to 5.5) but reduced systemic 11β-HSD1 activity by 87% (69-104%). Wound diameter was 34% (7-63%) smaller with AZD4017 at day 2, and 48% (12-85%) smaller after repeat wounding at day 30. AZD4017 improved epidermal integrity but modestly impaired barrier function. Minimal adverse events were comparable to placebo. Recruitment rate, retention, and data completeness were 2.9/month, 27/28, and 95.3%, respectively. CONCLUSION A phase 2 trial is feasible, and preliminary proof-of-concept data suggests AZD4017 warrants further investigation in conditions of delayed healing, for example in diabetic foot ulcers. SIGNIFICANCE STATEMENT Stress hormone activation by the enzyme 11β-HSD type 1 impairs skin function (e.g. integrity) and delays wound healing in animal models of diabetes, but effects in human skin were previously unknown. Skin function was evaluated in response to treatment with a 11β-HSD type 1 inhibitor (AZD4017), or placebo, in people with type 2 diabetes. Importantly, AZD4017 was safe and well tolerated. This first-in-human randomized, controlled, clinical trial found novel evidence that 11β-HSD type 1 regulates skin function in humans, including improved wound healing, epidermal integrity, and increased water loss. Results warrant further studies in conditions of impaired wound healing, for example, diabetic foot ulcers to evaluate 11β-HSD type 1 as a novel therapeutic target forchronic wounds.
Collapse
Affiliation(s)
- R A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - E M A Hensor
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - F Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - K Shams
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - A Abbas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - R J Fairclough
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D
| | - L Webber
- Emerging Portfolio Development, Late Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - L Pegg
- Emerging Portfolio Development, Late Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - A Freeman
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D
| | - A E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - W Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - A W Morgan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - A A Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - P M Stewart
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - D A Russell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Leeds Vascular Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - A Tiganescu
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Correspondence should be addressed to A Tiganescu;
| |
Collapse
|
9
|
Luo Y, Wang X, Yu X, Jin R, Liu L. Imaging sebaceous gland using optical coherence tomography with deep learning assisted automatic identification. JOURNAL OF BIOPHOTONICS 2021; 14:e202100015. [PMID: 33710798 DOI: 10.1002/jbio.202100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Imaging sebaceous glands and evaluating morphometric parameters are important for diagnosis and treatment of serum problems. In this article, we investigate the feasibility of high-resolution optical coherence tomography (OCT) in combination with deep learning assisted automatic identification for these purposes. Specifically, with a spatial resolution of 2.3 μm × 6.2 μm (axial × lateral, in air), OCT is capable of clearly differentiating sebaceous gland from other skin structures and resolving the sebocyte layer. In order to achieve efficient and timely imaging analysis, a deep learning approach built upon ResNet18 is developed to automatically classify OCT images (with/without sebaceous gland), with a classification accuracy of 97.9%. Based on the result of automatic identification, we further demonstrate the possibility to measure gland size, sebocyte layer thickness and gland density.
Collapse
Affiliation(s)
- Yuemei Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xianghong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Ruibing Jin
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Ghosh B, Mandal M, Mitra P, Chatterjee J. Attenuation corrected-optical coherence tomography for quantitative assessment of skin wound healing and scar morphology. JOURNAL OF BIOPHOTONICS 2021; 14:e202000357. [PMID: 33332734 DOI: 10.1002/jbio.202000357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Imaging the structural modifications of underlying tissues is vital to monitor wound healing. Optical coherence tomography (OCT) images high-resolution sub-surface information, but suffers a loss of intensity with depth, limiting quantification. Hence correcting the attenuation loss is important. We performed swept source-OCT of full-thickness excision wounds for 300 days in mice skin. We used single-scatter attenuation models to determine and correct the attenuation loss in the images. The phantom studies established the correspondence of corrected-OCT intensity (reflectivity) with matrix density and hydration. We histologically validated the corrected-OCT and measured the wound healing rate. We noted two distinct phases of healing-rapid and steady-state. We also detected two compartments in normal scars using corrected OCT that otherwise were not visible in the OCT scans. The OCT reflectivity in the scar compartments corresponded to distinct cell populations, mechanical properties and composition. OCT reflectivity has potential applications in evaluating the therapeutic efficacy of healing and characterizing scars.
Collapse
Affiliation(s)
- Biswajoy Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mousumi Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pabitra Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
11
|
Ajjan R, Hensor EM, Shams K, Del Galdo F, Abbas A, Woods J, Fairclough RJ, Webber L, Pegg L, Freeman A, Morgan A, Stewart PM, Taylor AE, Arlt W, Tahrani A, Russell D, Tiganescu A. A randomised controlled pilot trial of oral 11β-HSD1 inhibitor AZD4017 for wound healing in adults with type 2 diabetes mellitus.. [DOI: 10.1101/2021.03.23.21254200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractChronic wounds (e.g. diabetic foot ulcers) have a major impact on quality of life, yet treatments remain limited. Glucocorticoids impair wound healing; preclinical research suggests that blocking glucocorticoid activation by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves wound repair. This investigator-initiated double-blind, randomised, placebo-controlled parallel-group phase 2b pilot trial investigated efficacy, safety and feasibility of 11β-HSD1 inhibition for 35 days by oral AZD4017 (AZD) treatment in adults with type 2 diabetes (n=14) compared to placebo (PCB, n=14) in a single-centre secondary care setting. Computer-generated 1:1 randomisation was pharmacy-administered. From 300 screening invitations, 36 attended, 28 were randomised. There was no proof-of-concept that AZD inhibited 24 hour skin 11β-HSD1 activity at day 28 (primary outcome: adjusted difference AZD-PCB 90% CI (diffCI)=-3.4,5.5) but systemic 11β-HSD1 activity (median urinary [THF+alloTHF]/THE ratio) was 87% lower with AZD at day 35 (PCB 1.00, AZD 0.13, diffCI=-1.04,-0.69). Mean wound gap diameter (mm) following baseline 2mm punch biopsy was 34% smaller at day 2 (PCB 1.51, AZD 0.98, diffCI=-0.95,-0.10) and 48% smaller after repeat wounding at day 30 (PCB 1.35, AZD 0.70, diffCI=-1.15,-0.16); results also suggested greater epidermal integrity but modestly impaired barrier function with AZD. AZD was well-tolerated with minimal side effects and comparable adverse events between treatments. Staff availability restricted recruitment (2.9/month); retention (27/28) and data completeness (95.3%) were excellent. These preliminary findings suggest that AZD may improve wound healing in patients with type 2 diabetes and warrant a fully-powered trial in patients with active ulcers. [Trial Registry: www.isrctn.com/ISRCTN74621291.FundingMRC Confidence in Concept and NIHR Senior Investigator Award.]Single Sentence SummaryAZD4017 was safe; data suggested improved skin healing / integrity, and modestly reduced epidermal barrier function in patients with type 2 diabetes.Disclosure SummaryI certify that neither I nor my co-authors have a conflict of interest as described above that is relevant to the subject matter or materials included in this Work.
Collapse
|
12
|
Castro PAA, Lima CA, Morais MRPT, Zorn TMT, Zezell DM. Monitoring the Progress and Healing Status of Burn Wounds Using Infrared Spectroscopy. APPLIED SPECTROSCOPY 2020; 74:758-766. [PMID: 32419472 DOI: 10.1177/0003702820919446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Burns are one of the leading causes of morbidity worldwide and the most costly traumatic injuries. A better understanding of the molecular mechanisms in wound healing is required to accelerate tissue recovery and reduce the health economic impact. However, the standard techniques used to evaluate the biological events associated to wound repair are laborious, time-consuming, and/or require multiple assays/staining. Therefore, this study aims to evaluate the feasibility of Fourier transform infrared (FT-IR) spectroscopy to monitor the progress and healing status of burn wounds. Burn injuries were induced on Wistar rats by water vapor exposure and biopsied for further histopathological and spectroscopic evaluation at four time-points (3, 7, 14, and 21 days). Spectral data were preprocessed and compared by principal component analysis. Pairwise comparison of post-burn groups to each other revealed that metabolic activity induced by thermal injury decreases as the healing progresses. Higher amounts of carbohydrates, proteins, lipids, and nucleic acids were evidenced on days 3 and 7 compared to healthy skin and reduced amounts of these molecular structural units on days 14 and 21 post-burn. FT-IR spectroscopy was used to determine the healing status of a wound based on the biochemical information retained by spectral signatures in each phase of healing. Our findings demonstrate that FT-IR spectroscopy can monitor the biological events triggered by burn trauma as well as to detect the wound status including full recovery based on the spectral changes associated to the biochemical events in each phase.
Collapse
Affiliation(s)
- Pedro A A Castro
- Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Cassio A Lima
- Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), University of Sao Paulo (USP), Sao Paulo, Brazil
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mychel R P T Morais
- Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Telma M T Zorn
- Instituto de Ciencias Biomedicas (ICB), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Denise M Zezell
- Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
13
|
Ashrafi M, Xu Y, Muhamadali H, White I, Wilkinson M, Hollywood K, Baguneid M, Goodacre R, Bayat A. A microbiome and metabolomic signature of phases of cutaneous healing identified by profiling sequential acute wounds of human skin: An exploratory study. PLoS One 2020; 15:e0229545. [PMID: 32106276 PMCID: PMC7046225 DOI: 10.1371/journal.pone.0229545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/08/2020] [Indexed: 01/13/2023] Open
Abstract
Profiling skin microbiome and metabolome has been utilised to gain further insight into wound healing processes. The aims of this multi-part temporal study in 11 volunteers were to analytically profile the dynamic wound tissue and headspace metabolome and sequence microbial communities in acute wound healing at days 0, 7, 14, 21 and 28, and to investigate their relationship to wound healing, using non-invasive quantitative devices. Metabolites were obtained using tissue extraction, sorbent and polydimethylsiloxane patches and analysed using GCMS. PCA of wound tissue metabolome clearly separated time points with 10 metabolites of 346 being involved in separation. Analysis of variance-simultaneous component analysis identified a statistical difference between the wound headspace metabolome, sites (P = 0.0024) and time points (P<0.0001), with 10 out of the 129 metabolites measured involved with this separation between sites and time points. A reciprocal relationship between Staphylococcus spp. and Propionibacterium spp. was observed at day 21 (P<0.05) with a statistical correlation between collagen and Propionibacterium (r = 0.417; P = 0.038) and Staphylococcus (r = -0.434; P = 0.03). Procrustes analysis showed a statistically significant similarity between wound headspace and tissue metabolome with non-invasive wound devices. This exploratory study demonstrates the temporal and dynamic nature of acute wound metabolome and microbiome presenting a novel class of biomarkers that correspond to wound healing, with further confirmatory studies now necessary.
Collapse
Affiliation(s)
- Mohammed Ashrafi
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, NIHR Manchester Biomedical Research Centre (BRC), University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Bioengineering Group, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Iain White
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Katherine Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Mohamed Baguneid
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, NIHR Manchester Biomedical Research Centre (BRC), University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Bioengineering Group, School of Materials, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Masson‐Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, Frade MAC. Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol 2020; 101:21-37. [PMID: 32227524 PMCID: PMC7306904 DOI: 10.1111/iep.12346] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Wound healing studies are intricate, mainly because of the multifaceted nature of the wound environment and the complexity of the healing process, which integrates a variety of cells and repair phases, including inflammation, proliferation, reepithelialization and remodelling. There are a variety of possible preclinical models, such as in mice, rabbits and pigs, which can be used to mimic acute or impaired for example, diabetic and nutrition-related wounds. These can be induced by many different techniques, with excision or incision being the most common. After determining a suitable model for a study, investigators need to select appropriate and reproducible methods that will allow the monitoring of the wound progression over time. The assessment can be performed by non-invasive protocols such as wound tracing, photographic documentation (including image analysis), biophysical techniques and/or by invasive protocols that will require wound biopsies. In this article, we provide an overview of some of the most often needed and used: (a) preclinical/animal models including incisional, excisional, burn and impaired wounds; (b) methods to evaluate the healing progression such as wound healing rate, wound analysis by image, biophysical assessment, histopathological, immunological and biochemical assays. The aim is to help researchers during the design and execution of their wound healing studies.
Collapse
Affiliation(s)
- Daniela S. Masson‐Meyers
- Marquette University School of DentistryMilwaukeeWisconsinUSA
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| | - Thiago A. M. Andrade
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- Graduate Program of Biomedical SciencesUniversity Center of Herminio Ometto Foundation (FHO)ArarasSao PauloBrazil
| | - Guilherme F. Caetano
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- Graduate Program of Biomedical SciencesUniversity Center of Herminio Ometto Foundation (FHO)ArarasSao PauloBrazil
| | - Francielle R. Guimaraes
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- University Center of Associated Schools of Education (UNIFAE)São João da Boa VistaSão PauloBrazil
| | - Marcel N. Leite
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| | - Saulo N. Leite
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- University Center of the Educational Foundation Guaxupe (UNIFEG)GuaxupeMinas GeraisBrazil
| | - Marco Andrey C. Frade
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| |
Collapse
|
15
|
Berekméri A, Tiganescu A, Alase AA, Vital E, Stacey M, Wittmann M. Non-invasive Approaches for the Diagnosis of Autoimmune/Autoinflammatory Skin Diseases-A Focus on Psoriasis and Lupus erythematosus. Front Immunol 2019; 10:1931. [PMID: 31497014 PMCID: PMC6712514 DOI: 10.3389/fimmu.2019.01931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
The traditional diagnostic gold standard for inflammatory skin lesions of unclear etiology is dermato-histopathology. As this approach requires an invasive skin biopsy, biopsy processing and analysis by specialized histologists, it is a resource intensive approach requiring trained healthcare professionals. In many health care settings access to this diagnostic approach can be difficult and outside emergency cases will usually take several weeks. This scenario leads to delayed or inappropriate treatment given to patients. With dramatically increased sensitivity of a range of analysis systems including mass spectrometry, high sensitivity, multiplex ELISA based systems and PCR approaches we are now able to "measure" samples with unprecedented sensitivity and accuracy. Other important developments include the long-term monitoring of parameters using microneedle approaches and the improvement in imaging systems such as optical coherence tomography. In this review we will focus on recent achievements regarding measurements from non-invasive sampling, in particular from plucked hair and skin tape-strips which seem well suited for the diagnosis of lupus erythematosus and psoriatic inflammation, respectively. While these approaches will not replace clinical observation-they can contribute to improved subgroup diagnosis, stratified therapeutic approaches and have great potential for providing molecular and mechanistic insight in to inflammatory skin diseases.
Collapse
Affiliation(s)
- Anna Berekméri
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Ana Tiganescu
- Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Adewonuola A. Alase
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Edward Vital
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Miriam Wittmann
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
16
|
Ud-Din S, Foden P, Stocking K, Mazhari M, Al-Habba S, Baguneid M, McGeorge D, Bayat A. Objective assessment of dermal fibrosis in cutaneous scarring, using optical coherence tomography, high-frequency ultrasound and immunohistomorphometry of human skin. Br J Dermatol 2019; 181:722-732. [PMID: 30729516 PMCID: PMC6852041 DOI: 10.1111/bjd.17739] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
Background Noninvasive quantitative assessment of dermal fibrosis remains a challenge. Optical coherence tomography (OCT) and high‐frequency ultrasound (HFUS) can accurately measure structural and physiological changes in skin. Objectives To perform quantitative analysis of cutaneous fibrosis. Methods Sixty‐two healthy volunteers underwent multiple sequential skin biopsies (day 0 and 1–8 weekly thereafter), with OCT and HFUS measurements at each time point supported with immunohistomorphometry analysis. Results HFUS and OCT provided quantitative measurements of skin thickness, which increased from uninjured skin (1·18 and 1·2 mm, respectively) to week 1 (1·28 mm, P = 0·01; 1·27 mm, P = 0·02), and compared favourably with haematoxylin and eosin. Spearman correlation showed good agreement between techniques (P < 0·001). HFUS intensity corresponded to dermal density, with reduction from uninjured skin (42%) to week 8 (29%) (P = 0·02). The OCT attenuation coefficient linked with collagen density and was reduced at week 8 (1·43 mm, P < 0·001). Herovici analysis showed that mature collagen levels were highest in uninjured skin (72%) compared with week 8 (42%, P = 0·04). Fibronectin was greatest at week 4 (0·72 AU) and reduced at week 8 (0·56 AU); and α‐smooth muscle actin increased from uninjured skin (11·5%) to week 8 (67%, P = 0·003). Conclusions Time‐matched comparison images between haematoxylin and eosin, OCT and HFUS demonstrated that epidermal and dermal structures were better distinguished by OCT. HFUS enabled deeper visualization of the dermis including the subcutaneous tissue. Choice of device was dependent on the depth of scar type, parameters to be measured and morphological detail required in order to provide better objective quantitative indices of the quality and extent of dermal fibrosis. What's already known about this topic? Objective studies of the progression of scar formation and the properties of mature scars are necessary in order to evaluate clinical treatment, and for research focused on developing novel methods for management of dermal fibrosis. Optical coherence tomography (OCT) and high‐frequency ultrasound (HFUS) are two known noninvasive techniques that are used effectively for measuring structural and physiological changes in cutaneous tissue.
What does this study add? OCT and HFUS are useful tools for noninvasive monitoring of cutaneous fibrosis, enabling quantitative sequential temporal measurements of cutaneous thickness similarly to histology. OCT attenuation coefficient (better in resolution) and HFUS intensity (better in depth) provide an indication of collagen deposition in skin over the course of healing, supported by immunohistochemical analysis. Choice of device is dependent upon wound and scar type, the parameters to be measured and the morphological detail required.
https://doi.org/10.1111/bjd.18394 available online https://www.bjdonline.com/article/Objective-assessment-of-dermal-fibrosis-in-cutaneous-scarring-using-optical-coherence-tomography-high-frequency-ultrasound-and-immunohistomorphometry-of-human-skin/
Collapse
Affiliation(s)
- S Ud-Din
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester, U.K
| | - P Foden
- Medical Statistics, University Hospital of South Manchester, Manchester, U.K
| | - K Stocking
- Medical Statistics, University Hospital of South Manchester, Manchester, U.K
| | - M Mazhari
- Adult Histopathology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - S Al-Habba
- Adult Histopathology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - M Baguneid
- Vascular Surgery, Manchester University NHS Foundation Trust, Manchester, U.K
| | - D McGeorge
- Plastic and Reconstructive Surgery, Grosvenor Nuffield Hospital, Chester, U.K
| | - A Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester, U.K
| |
Collapse
|
17
|
Holmes J, Schuh S, Bowling FL, Mani R, Welzel J. Dynamic Optical Coherence Tomography Is a New Technique for Imaging Skin Around Lower Extremity Wounds. INT J LOW EXTR WOUND 2019; 18:65-74. [DOI: 10.1177/1534734618821015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic wounds such as venous leg ulcers invariably heal slowly and recur. In the case of venous leg ulcers, poor healing of chronic wounds is variously attributed to ambulatory hypertension, impaired perfusion and diffusion, presence of chronic inflammation at wound sites, lipodermatosclerosis, and senescence. The aim of this study was to investigate whether a new technique, optical coherence tomography (OCT), which permits imaging of blood capillaries in the peri-wound skin, can provide new insights into the pathology. OCT and its recent variant, dynamic OCT, permit rapid noninvasive depth-resolved imaging of the capillaries in the superficial dermis via a handheld probe, showing the morphology and density of vessels down to 20 µm in diameter. We used dynamic OCT to investigate 15 chronic wounds and assess characteristics of the vessels at the 4 poles around the wounds, the wound bed, adjacent dermatosclerosis, and unaffected skin. The results of the study show that both vessel morphology and density in the wound edges are dramatically different from that in healthy skin, showing clusters of glomuleri-like vessels (knot-like forms or clumps) and an absence of linear branching vessels, and also greater blood perfusion. Such vessel shapes are reported to be associated with tissue growth. The OCT imaging procedure was rapid and well tolerated by patients and provided new information not available from other devices. Thus, OCT appears to have great promise as a tool for the evaluation and study of chronic ulcers.
Collapse
Affiliation(s)
- Jon Holmes
- Michelson Diagnostics Ltd, Maidstone, Kent, UK
| | | | | | - Raj Mani
- University of Southampton, Southampton, UK
- Chiang Mai University, Chiang Mai, Thailand
- Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|
18
|
Nasir NAM, Paus R, Ansell DM. Fluorescent cell tracer dye permits real-time assessment of re-epithelialization in a serum-free ex vivo human skin wound assay. Wound Repair Regen 2018; 27:126-133. [DOI: 10.1111/wrr.12688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/29/2018] [Accepted: 11/10/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Nur Azida Mohd Nasir
- Centre for Dermatology Research, School of Biological Sciences; The University of Manchester; Manchester United Kingdom
- School of Medical Sciences; Universiti Sains Malaysia; Kubang Kerian Malaysia
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences; The University of Manchester; Manchester United Kingdom
- NIHR Manchester Biomedical Research Centre, The University of Manchester; Manchester United Kingdom
- Manchester Academic Health Sciences Centre, The University of Manchester; Manchester United Kingdom
| | - David M. Ansell
- Centre for Dermatology Research, School of Biological Sciences; The University of Manchester; Manchester United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine; The University of Manchester; Manchester United Kingdom
| |
Collapse
|
19
|
Silver FH, Shah RG. Mechanical spectroscopy and imaging of skin components in vivo: Assignment of the observed moduli. Skin Res Technol 2018; 25:47-53. [DOI: 10.1111/srt.12594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2018] [Indexed: 11/29/2022]
Affiliation(s)
- F. H. Silver
- Department of Pathology and Laboratory Medicine; Robert Wood Johnson Medical School, Rutgers; The State University of New Jersey; Piscataway NJ USA
- OptoVibronex, LLC.; Mt. Bethel PA USA
| | - R. G. Shah
- Graduate Program in Biomedical Engineering, Rutgers; The State University of New Jersey; Piscataway NJ USA
| |
Collapse
|
20
|
Deegan AJ, Wang W, Men S, Li Y, Song S, Xu J, Wang RK. Optical coherence tomography angiography monitors human cutaneous wound healing over time. Quant Imaging Med Surg 2018; 8:135-150. [PMID: 29675355 DOI: 10.21037/qims.2018.02.07] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background In vivo imaging of the complex cascade of events known to be pivotal elements in the healing of cutaneous wounds is a difficult but essential task. Current techniques are highly invasive, or lack the level of vascular and structural detail required for accurate evaluation, monitoring and treatment. We aimed to use an advanced optical coherence tomography (OCT)-based angiography (OCTA) technique for the non-invasive, high resolution imaging of cutaneous wound healing. Methods We used a clinical prototype OCTA to image, identify and track key vascular and structural adaptations known to occur throughout the healing process. Specific vascular parameters, such as diameter and density, were measured to aid our interpretations under a spatiotemporal framework. Results We identified multiple distinct, yet overlapping stages, hemostasis, inflammation, proliferation, and remodeling, and demonstrated the detailed vascularization and anatomical attributes underlying the multifactorial processes of dermatologic wound healing. Conclusions OCTA provides an opportunity to both qualitatively and quantitatively assess the vascular response to acute cutaneous damage and in the future, may help to ascertain wound severity and possible healing outcomes; thus, enabling more effective treatment options.
Collapse
Affiliation(s)
- Anthony J Deegan
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Wendy Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Shaojie Men
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Yuandong Li
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Shaozhen Song
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jingjiang Xu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.,Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Glinos GD, Verne SH, Aldahan AS, Liang L, Nouri K, Elliot S, Glassberg M, Cabrera DeBuc D, Koru-Sengul T, Tomic-Canic M, Pastar I. Optical coherence tomography for assessment of epithelialization in a human ex vivo wound model. Wound Repair Regen 2018; 25:1017-1026. [PMID: 29235208 DOI: 10.1111/wrr.12600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
The ex vivo human skin wound model is a widely accepted model to study wound epithelialization. Due to a lack of animal models that fully replicate human conditions, the ex vivo model is a valuable tool to study mechanisms of wound reepithelialization, as well as for preclinical testing of novel therapeutics. The current standard for assessment of wound healing in this model is histomorphometric analysis, which is labor intensive, time consuming, and requires multiple biological and technical replicates in addition to assessment of different time points. Optical coherence tomography (OCT) is an emerging noninvasive imaging technology originally developed for noninvasive retinal scans that avoids the deleterious effects of tissue processing. This study investigated OCT as a novel method for assessing reepithelialization in the human ex vivo wound model. Excisional ex vivo wounds were created, maintained at air-liquid interface, and healing progression was assessed at days 4 and 7 with OCT and histology. OCT provided adequate resolution to identify the epidermis, the papillary and reticular dermis, and importantly, migrating epithelium in the wound bed. We have deployed OCT as a noninvasive tool to produce, longitudinal "optical biopsies" of ex vivo human wound healing process, and we established an optimal quantification method of re-epithelialization based on en face OCT images of the total wound area. Pairwise statistical analysis of OCT and histology based quantifications for the rate of epithelialization have shown the feasibility and superiority of OCT technology for noninvasive monitoring of human wound epithelialization. Furthermore, we have utilized OCT to evaluate therapeutic potential of allogeneic adipose stem cells revealing their ability to promote reepithelialization in human ex vivo wounds. OCT technology is promising for its applications in wound healing and evaluation of novel therapeutics in both the laboratory and the clinical settings.
Collapse
Affiliation(s)
- George D Glinos
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miami, Florida
| | - Sebastian H Verne
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Adam S Aldahan
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Liang Liang
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miami, Florida
| | - Keyvan Nouri
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Sharon Elliot
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Marilyn Glassberg
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Delia Cabrera DeBuc
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Tulay Koru-Sengul
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miami, Florida
| | - Irena Pastar
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miami, Florida
| |
Collapse
|
22
|
Laser-induced autofluorescence-based objective evaluation of burn tissue repair in mice. Lasers Med Sci 2017; 33:699-707. [DOI: 10.1007/s10103-017-2371-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/22/2017] [Indexed: 11/26/2022]
|
23
|
Ahlström M, Gjerdrum L, Larsen H, Fuchs C, Sørensen A, Forman J, Ågren M, Mogensen M. Suction blister lesions and epithelialization monitored by optical coherence tomography. Skin Res Technol 2017; 24:65-72. [DOI: 10.1111/srt.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 12/17/2022]
Affiliation(s)
- M.G. Ahlström
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - L.M.R. Gjerdrum
- Department of Pathology; Zealand University Hospital; Roskilde Denmark
| | - H.F. Larsen
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - C. Fuchs
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - A.L. Sørensen
- Section of Biostatistics; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - J.L. Forman
- Section of Biostatistics; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - M.S. Ågren
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
- Digestive Disease Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - M. Mogensen
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
24
|
Maiti R, Gerhardt LC, Lee ZS, Byers RA, Woods D, Sanz-Herrera JA, Franklin SE, Lewis R, Matcher SJ, Carré MJ. In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching. J Mech Behav Biomed Mater 2016; 62:556-569. [DOI: 10.1016/j.jmbbm.2016.05.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 11/29/2022]
|
25
|
Ud-Din S, Bayat A. Non-invasive objective devices for monitoring the inflammatory, proliferative and remodelling phases of cutaneous wound healing and skin scarring. Exp Dermatol 2016; 25:579-85. [DOI: 10.1111/exd.13027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- University Hospital of South Manchester NHS Foundation Trust; Faculty of Medical and Human Sciences; Manchester Academic Health Science Centre; University of Manchester; Manchester UK
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- University Hospital of South Manchester NHS Foundation Trust; Faculty of Medical and Human Sciences; Manchester Academic Health Science Centre; University of Manchester; Manchester UK
| |
Collapse
|
26
|
Baran U, Choi WJ, Wang RK. Potential use of OCT-based microangiography in clinical dermatology. Skin Res Technol 2016; 22:238-246. [PMID: 26335451 PMCID: PMC4777681 DOI: 10.1111/srt.12255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) is a revolutionary imaging technique used commonly in ophthalmology, and on the way to become clinically viable alternative in dermatology due to its capability of acquiring histopathology level details of in vivo tissue, non-invasively. In this study, we demonstrate the capabilities of OCT-based microangiography in detecting high resolution, three-dimensional structural, and microvascular features of in vivo human skin with various conditions. METHODS A swept-source OCT system that operates on a central wavelength of 1310 nm with an A-line rate of 100 kHz is used in this study. We apply optical microangiography (OMAG) technique to visualize the structural and microvascular changes in tissue. RESULTS OMAG images provide detailed visualization of functional microvasculature of healthy human skin from cheek and forehead areas, abnormal skin conditions from face, chest and belly. Moreover, OMAG is capable of monitoring the progress of wound healing on human skin from arm, delivering unprecedented detail of microstructural and microvascular information during longitudinal wound healing process. CONCLUSION The presented results promise the clinical use of OCT angiography, aiming to treat prevalent cutaneous diseases, by detecting blood perfusion, and structural changes within human skin, in vivo.
Collapse
Affiliation(s)
- Utku Baran
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Woo June Choi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Schuh S, Kaestle R, Sattler EC, Welzel J. Optical coherence tomography of actinic keratoses and basal cell carcinomas - differentiation by quantification of signal intensity and layer thickness. J Eur Acad Dermatol Venereol 2016; 30:1321-6. [DOI: 10.1111/jdv.13569] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/18/2015] [Indexed: 11/30/2022]
Affiliation(s)
- S. Schuh
- Department of Dermatology and Allergology; General Hospital Augsburg; Augsburg Germany
| | - R. Kaestle
- Department of Dermatology and Allergology; General Hospital Augsburg; Augsburg Germany
| | - E. C. Sattler
- Department of Dermatology and Allergology; Ludwig-Maximilian University of Munich; Munich Germany
| | - J. Welzel
- Department of Dermatology and Allergology; General Hospital Augsburg; Augsburg Germany
| |
Collapse
|
28
|
Ud‐Din S, Greaves NS, Sebastian A, Baguneid M, Bayat A. Noninvasive device readouts validated by immunohistochemical analysis enable objective quantitative assessment of acute wound healing in human skin. Wound Repair Regen 2015; 23:901-14. [DOI: 10.1111/wrr.12344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/18/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Sara Ud‐Din
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of ManchesterManchester United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science CentreManchester United Kingdom
| | - Nicholas S. Greaves
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of ManchesterManchester United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science CentreManchester United Kingdom
| | - Anil Sebastian
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of ManchesterManchester United Kingdom
| | - Mohamed Baguneid
- University Hospital of South Manchester NHS Foundation Trust, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science CentreManchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of ManchesterManchester United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science CentreManchester United Kingdom
| |
Collapse
|
29
|
Greaves NS, Iqbal SA, Hodgkinson T, Morris J, Benatar B, Alonso‐Rasgado T, Baguneid M, Bayat A. Skin substitute‐assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography. Wound Repair Regen 2015; 23:483-94. [DOI: 10.1111/wrr.12308] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/21/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Nicholas S. Greaves
- Plastic and Reconstructive Surgery Research, Institute of Inflammation and RepairThe University of Manchester
- Department of Vascular SurgeryUniversity Hospital of South Manchester NHS Foundation Trust, Wythenshawe HospitalManchester
- Bioengineering Group, School of Materials, University of Manchester, andThe Pennine Acute Hospitals NHS TrustThe Royal Oldham HospitalOldham United Kingdom
| | - Syed A. Iqbal
- Plastic and Reconstructive Surgery Research, Institute of Inflammation and RepairThe University of Manchester
| | - Tom Hodgkinson
- Plastic and Reconstructive Surgery Research, Institute of Inflammation and RepairThe University of Manchester
| | - Julie Morris
- Department of Medical Statistics, University Hospital of South Manchester NHS Foundation TrustWythenshawe Hospital
| | - Brian Benatar
- Department of Histopathology, The Pennine Acute Hospitals NHS TrustThe Royal Oldham HospitalOldham United Kingdom
| | - Teresa Alonso‐Rasgado
- Bioengineering Group, School of Materials, University of Manchester, andThe Pennine Acute Hospitals NHS TrustThe Royal Oldham HospitalOldham United Kingdom
| | - Mohamed Baguneid
- Department of Vascular SurgeryUniversity Hospital of South Manchester NHS Foundation Trust, Wythenshawe HospitalManchester
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Institute of Inflammation and RepairThe University of Manchester
- Bioengineering Group, School of Materials, University of Manchester, andThe Pennine Acute Hospitals NHS TrustThe Royal Oldham HospitalOldham United Kingdom
| |
Collapse
|
30
|
Gambichler T, Pljakic A, Schmitz L. Recent advances in clinical application of optical coherence tomography of human skin. Clin Cosmet Investig Dermatol 2015; 8:345-54. [PMID: 26185462 PMCID: PMC4501682 DOI: 10.2147/ccid.s69119] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Optical coherence tomography (OCT) is an emerging noninvasive imaging method that uses infrared light and interferometric techniques. The method has become increasingly popular in skin research as well as daily dermatology practice. In the present brief review, we focused on recent (2009-2014) OCT studies on the human skin, which included a reasonable sample size and statistics. Twenty-five papers were selected and briefly described OCT of epidermal thickness, skin appendages, wound healing, extracellular matrix and skin fibrosis, vascular malformations, and skin tumors such as basal cell carcinoma, actinic keratoses, and malignant melanoma.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Azem Pljakic
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Lutz Schmitz
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Baran U, Li Y, Choi WJ, Kalkan G, Wang RK. High resolution imaging of acne lesion development and scarring in human facial skin using OCT-based microangiography. Lasers Surg Med 2015; 47:231-8. [PMID: 25740313 DOI: 10.1002/lsm.22339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Acne is a common skin disease that often leads to scarring. Collagen and other tissue damage from the inflammation of acne give rise to permanent skin texture and microvascular changes. In this study, we demonstrate the capabilities of optical coherence tomography-based microangiography in detecting high-resolution, three-dimensional structural, and microvascular features of in vivo human facial skin during acne lesion initiation and scar development. MATERIALS AND METHODS A real time swept source optical coherence tomography system is used in this study to acquire volumetric images of human skin. The system operates on a central wavelength of 1,310 nm with an A-line rate of 100 kHz, and with an extended imaging range (∼12 mm in air). The system uses a handheld imaging probe to image acne lesion on a facial skin of a volunteer. We utilize optical microangiography (OMAG) technique to evaluate the changes in microvasculature and tissue structure. RESULTS Thanks to the high sensitivity of OMAG, we are able to image microvasculature up to capillary level and visualize the remodeled vessels around the acne lesion. Moreover, vascular density change derived from OMAG measurement is provided as an alternative biomarker for the assessment of human skin diseases. In contrast to other techniques like histology or microscopy, our technique made it possible to image 3D tissue structure and microvasculature up to 1.5 mm depth in vivo without the need of exogenous contrast agents. CONCLUSIONS The presented results are promising to facilitate clinical trials aiming to treat acne lesion scarring, as well as other prevalent skin diseases, by detecting cutaneous blood flow and structural changes within human skin in vivo.
Collapse
Affiliation(s)
- Utku Baran
- Department of Bioengineering, University of Washington, Seattle, Washington; Department of Electrical Engineering, University of Washington, Seattle, Washington
| | | | | | | | | |
Collapse
|
32
|
Yousefi S, Qin J, Dziennis S, Wang RK. Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:76015. [PMID: 25036212 PMCID: PMC4103582 DOI: 10.1117/1.jbo.19.7.076015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/24/2014] [Accepted: 06/05/2014] [Indexed: 05/20/2023]
Abstract
Cutaneous wound healing consists of multiple overlapping phases starting with blood coagulation following incision of blood vessels. We utilized label-free optical coherence tomography and optical microangiography (OMAG) to noninvasively monitor healing process and dynamics of microcirculation system in a mouse ear pinna wound model. Mouse ear pinna is composed of two layers of skin separated by a layer of cartilage and because its total thickness is around 500 μm, it can be utilized as an ideal model for optical imaging techniques. These skin layers are identical to human skin structure except for sweat ducts and glands. Microcirculatory system responds to the wound injury by recruiting collateral vessels to supply blood flow to hypoxic region. During the inflammatory phase, lymphatic vessels play an important role in the immune response of the tissue and clearing waste from interstitial fluid. In the final phase of wound healing, tissue maturation, and remodeling, the wound area is fully closed while blood vessels mature to support the tissue cells. We show that using OMAG technology allows noninvasive and label-free monitoring and imaging each phase of wound healing that can be used to replace invasive tissue sample histology and immunochemistry technologies.
Collapse
Affiliation(s)
- Siavash Yousefi
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Jia Qin
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Suzan Dziennis
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|